Kenichirou Yasui, Y. Hashimoto, S. Baba, S. Hontsu, N. Matsumoto
{"title":"Evaluation of Bone Regeneration of Apatite Coating Poly-L-lactide Scaffold in Rat Calvarial Defects","authors":"Kenichirou Yasui, Y. Hashimoto, S. Baba, S. Hontsu, N. Matsumoto","doi":"10.11344/NANO.4.133","DOIUrl":null,"url":null,"abstract":"133 Introduction Cleft lip and palate is a frequently occurring congenital malformation that is caused by genetic and environmental factors [1, 2]. Loss of alveolar bone due to the cleft can lead to problems with feeding and speech, among other difficulties; therefore, surgical closure is strongly recommended [3, 4]. Autogenous bone grafting for patients with cleft lip and palate has become a well-accepted treatment modality to restore the function and structure of the maxillary arch at the cleft site [5, 6]. However, the procedure is very invasive and the amount of collectable bone is limited. Allogeneic bone grafts may transmit diseases and can cause immune-related complications. It is therefore necessary to develop a synthetic alternative to current graft materials for bone regeneration [7]. In recent years, poly(L-lactide) (PLLA) has been widely evaluated as a scaffold biomaterial because of its impressive biocompatibility, biodegradability, minimal inflammatory reaction, and excellent mechanical properties [8]. However, PLLA is known to show poor cell–material interaction because of its hydrophobic nature and lack of cell recognition signals [9]. In order to promote cell adhesion, surface modification of PLLA is often attempted [9]. Evaluation of Bone Regeneration of Apatite Coating Poly-L-lactide Scaffold in Rat Calvarial Defects","PeriodicalId":19070,"journal":{"name":"Nano Biomedicine","volume":"1 1","pages":"133-142"},"PeriodicalIF":0.0000,"publicationDate":"2012-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11344/NANO.4.133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
133 Introduction Cleft lip and palate is a frequently occurring congenital malformation that is caused by genetic and environmental factors [1, 2]. Loss of alveolar bone due to the cleft can lead to problems with feeding and speech, among other difficulties; therefore, surgical closure is strongly recommended [3, 4]. Autogenous bone grafting for patients with cleft lip and palate has become a well-accepted treatment modality to restore the function and structure of the maxillary arch at the cleft site [5, 6]. However, the procedure is very invasive and the amount of collectable bone is limited. Allogeneic bone grafts may transmit diseases and can cause immune-related complications. It is therefore necessary to develop a synthetic alternative to current graft materials for bone regeneration [7]. In recent years, poly(L-lactide) (PLLA) has been widely evaluated as a scaffold biomaterial because of its impressive biocompatibility, biodegradability, minimal inflammatory reaction, and excellent mechanical properties [8]. However, PLLA is known to show poor cell–material interaction because of its hydrophobic nature and lack of cell recognition signals [9]. In order to promote cell adhesion, surface modification of PLLA is often attempted [9]. Evaluation of Bone Regeneration of Apatite Coating Poly-L-lactide Scaffold in Rat Calvarial Defects