Evaluating Instructions for Gesture Recognition with an Accelerometer

Q4 Computer Science
Kazuya Murao, T. Terada
{"title":"Evaluating Instructions for Gesture Recognition with an Accelerometer","authors":"Kazuya Murao, T. Terada","doi":"10.11185/IMT.10.269","DOIUrl":null,"url":null,"abstract":"In the area of activity recognition with mobile sensors, a lot of works on context-aware systems using accelerometers have been proposed. Especially, mobile phones or remotes for video games using gesture recognition technologies enable easy and intuitive operations such as scrolling browser and drawing objects. Gesture input has an advantage of rich expressive power over the conventional interfaces, but it is difficult to share the gesture motion with other people through writing or verbally. Assuming that a commercial product using gestures is released, the developers make an instruction manual and tutorial expressing the gestures in text, figures, or videos. Then an end-user reads the instructions, imagines the gesture, then perform it. In this paper, we evaluate how user gestures change according to the types of the instruction. We obtained acceleration data for 10 kinds of gestures instructed through three types of texts, figures, and videos, totalling 44 patterns from 13 test subjects, for a total of 2,630 data samples. From the evaluation, gestures are correctly performed in the order of text→figure→video. Detailed instruction in texts is equivalent to that in figures. However, some words reflecting gestures disordered the users’ gestures since they could call multiple images to user’s mind.","PeriodicalId":16243,"journal":{"name":"Journal of Information Processing","volume":"10 1","pages":"269-280"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11185/IMT.10.269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

In the area of activity recognition with mobile sensors, a lot of works on context-aware systems using accelerometers have been proposed. Especially, mobile phones or remotes for video games using gesture recognition technologies enable easy and intuitive operations such as scrolling browser and drawing objects. Gesture input has an advantage of rich expressive power over the conventional interfaces, but it is difficult to share the gesture motion with other people through writing or verbally. Assuming that a commercial product using gestures is released, the developers make an instruction manual and tutorial expressing the gestures in text, figures, or videos. Then an end-user reads the instructions, imagines the gesture, then perform it. In this paper, we evaluate how user gestures change according to the types of the instruction. We obtained acceleration data for 10 kinds of gestures instructed through three types of texts, figures, and videos, totalling 44 patterns from 13 test subjects, for a total of 2,630 data samples. From the evaluation, gestures are correctly performed in the order of text→figure→video. Detailed instruction in texts is equivalent to that in figures. However, some words reflecting gestures disordered the users’ gestures since they could call multiple images to user’s mind.
用加速度计评估手势识别的指令
在使用移动传感器的活动识别领域,已经提出了大量使用加速度计的上下文感知系统的工作。特别是,使用手势识别技术的移动电话或视频游戏遥控器可以轻松直观地操作,例如滚动浏览器和绘制对象。手势输入相对于传统界面具有丰富的表达能力,但难以通过书面或口头方式与他人共享手势动作。假设一款使用手势的商业产品发布了,开发人员会制作一份说明手册和教程,以文本、图形或视频的形式表达手势。然后,终端用户阅读说明,想象手势,然后执行它。在本文中,我们评估了用户的手势如何根据指令的类型而变化。我们获得了通过文字、图形、视频三种方式指导的10种手势的加速度数据,共来自13个测试对象的44种模式,共计2630个数据样本。从评价来看,手势的正确执行顺序为文字→图形→视频。文字上的详细说明等同于图形上的详细说明。然而,一些反映手势的单词会扰乱用户的手势,因为它们会在用户的脑海中唤起多个图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Information Processing
Journal of Information Processing Computer Science-Computer Science (all)
CiteScore
1.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信