The Emerging Role of TPR-Domain Immunophilins in the Mechanism of Action of Steroid Receptors

Gisela I. Mazaira, M. Lagadari, Alejandra G. Erlejman, M. Galigniana
{"title":"The Emerging Role of TPR-Domain Immunophilins in the Mechanism of Action of Steroid Receptors","authors":"Gisela I. Mazaira, M. Lagadari, Alejandra G. Erlejman, M. Galigniana","doi":"10.11131/2014/101094","DOIUrl":null,"url":null,"abstract":"In the absence of ligand, some members of nuclear receptor family such as corticosteroid receptors are primarily located in the cytoplasm, and they rapidly accumulate in the nucleus upon ligand-binding. Other members of the family such as the estrogen receptor are mostly nuclear. Regardless of their primary location, these oligomeric proteins undergo a dynamic nuclear-cytoplasmic shuttling, and their transport through the cytoplasmic compartment has always been assumed to occur in a stochastic manner by simple diffusion. Although heuristic, this oversimplified model has never been demonstrated. Moreover, it has always been assumed that the first step related to receptor activation is the dissociation of the Hsp90-based heterocomplex, a process referred to as `transformation.' Nonetheless, recent experimental evidence indicates that the chaperone machinery is required for the retrotransport of the receptor throughout the cytoplasm and facilitates its active passage through the nuclear pore. Therefore, transformation is actually a nuclear event. A group of Hsp90-binding cochaperones belonging to the immunophilin family plays a cardinal role not only in the mechanism for receptor movement, but also in nuclear events leading to interactions with nuclear sites of action and the regulation of transcriptional activity. In this article we analyze the importance of molecular chaperones and TPR-domain immunophilins in the molecular mechanism of action of steroid receptors.","PeriodicalId":30720,"journal":{"name":"Nuclear Receptor Research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Receptor Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11131/2014/101094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

In the absence of ligand, some members of nuclear receptor family such as corticosteroid receptors are primarily located in the cytoplasm, and they rapidly accumulate in the nucleus upon ligand-binding. Other members of the family such as the estrogen receptor are mostly nuclear. Regardless of their primary location, these oligomeric proteins undergo a dynamic nuclear-cytoplasmic shuttling, and their transport through the cytoplasmic compartment has always been assumed to occur in a stochastic manner by simple diffusion. Although heuristic, this oversimplified model has never been demonstrated. Moreover, it has always been assumed that the first step related to receptor activation is the dissociation of the Hsp90-based heterocomplex, a process referred to as `transformation.' Nonetheless, recent experimental evidence indicates that the chaperone machinery is required for the retrotransport of the receptor throughout the cytoplasm and facilitates its active passage through the nuclear pore. Therefore, transformation is actually a nuclear event. A group of Hsp90-binding cochaperones belonging to the immunophilin family plays a cardinal role not only in the mechanism for receptor movement, but also in nuclear events leading to interactions with nuclear sites of action and the regulation of transcriptional activity. In this article we analyze the importance of molecular chaperones and TPR-domain immunophilins in the molecular mechanism of action of steroid receptors.
tpr结构域亲免疫蛋白在类固醇受体作用机制中的新作用
在没有配体的情况下,核受体家族的一些成员,如皮质类固醇受体,主要位于细胞质中,在配体结合后迅速积聚在细胞核中。该家族的其他成员,如雌激素受体,大多是核的。无论它们的主要位置如何,这些寡聚蛋白都经历了一个动态的核-细胞质穿梭,它们通过细胞质室的运输一直被认为是以简单扩散的随机方式发生的。虽然是启发式的,但这个过于简化的模型从未被证明过。此外,人们一直认为,与受体激活相关的第一步是基于hsp90的异络合物的解离,这一过程被称为“转化”。尽管如此,最近的实验证据表明,伴侣机制是整个细胞质中受体逆行运输所必需的,并促进其通过核孔的活性通道。因此,转型实际上是一个核事件。属于亲免疫蛋白家族的一组hsp90结合辅伴侣不仅在受体运动机制中发挥重要作用,而且在导致与核作用位点相互作用和转录活性调节的核事件中发挥重要作用。本文分析了分子伴侣和tpr结构域亲免疫蛋白在类固醇受体作用的分子机制中的重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信