On the Ф‐variation of stochastic processes with exponential moments

IF 1.1 Q1 MATHEMATICS
A. Basse-O’Connor, Michel J. G. Weber
{"title":"On the Ф‐variation of stochastic processes with exponential moments","authors":"A. Basse-O’Connor, Michel J. G. Weber","doi":"10.1112/tlms/tlw001","DOIUrl":null,"url":null,"abstract":"We obtain sharp sufficient conditions for exponentially integrable stochastic processes X={X(t):t∈[0,1]} , to have sample paths with bounded Φ ‐variation. When X is moreover Gaussian, we also provide a bound of the expectation of the associated Φ ‐variation norm of X . For a Hermite process X of order m∈N and of Hurst index H∈(1/2,1) , we show that X is of bounded Φ ‐variation where Φ(x)=x1/H(log(log1/x))−m/(2H) , and that this Φ is optimal. This shows that in terms of Φ ‐variation, the Rosenblatt process (corresponding to m=2 ) has more rough sample paths than the fractional Brownian motion (corresponding to m=1 ).","PeriodicalId":41208,"journal":{"name":"Transactions of the London Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2015-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1112/tlms/tlw001","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the London Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/tlms/tlw001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

We obtain sharp sufficient conditions for exponentially integrable stochastic processes X={X(t):t∈[0,1]} , to have sample paths with bounded Φ ‐variation. When X is moreover Gaussian, we also provide a bound of the expectation of the associated Φ ‐variation norm of X . For a Hermite process X of order m∈N and of Hurst index H∈(1/2,1) , we show that X is of bounded Φ ‐variation where Φ(x)=x1/H(log(log1/x))−m/(2H) , and that this Φ is optimal. This shows that in terms of Φ ‐variation, the Rosenblatt process (corresponding to m=2 ) has more rough sample paths than the fractional Brownian motion (corresponding to m=1 ).
关于具有指数矩的随机过程的Ф‐变异
我们得到了指数可积随机过程X={X(t):t∈[0,1]}具有有界Φ‐变异的样本路径的充分条件。当X还是高斯时,我们还提供了X的相关Φ‐变异范数的期望界。对于m∈N阶且Hurst指标H∈(1/2,1)的Hermite过程X,我们证明了X具有有界Φ‐变异,其中Φ(X)=x1/H(log(log1/ X))−m/(2H),并且该Φ是最优的。这表明,就Φ‐变异而言,Rosenblatt过程(对应于m=2)比分数阶布朗运动(对应于m=1)具有更多的粗糙样本路径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
8
审稿时长
41 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信