The Tits alternative for non‐spherical triangles of groups

IF 1.1 Q1 MATHEMATICS
J. Cuno, J. Lehnert
{"title":"The Tits alternative for non‐spherical triangles of groups","authors":"J. Cuno, J. Lehnert","doi":"10.1112/tlms/tlv005","DOIUrl":null,"url":null,"abstract":"Triangles of groups have been introduced by Gersten and Stallings. They are, roughly speaking, a generalization of the amalgamated free product of two groups and occur in the framework of Corson diagrams. First, we prove an intersection theorem for Corson diagrams. Then, we focus on triangles of groups. It has been shown by Howie and Kopteva that the colimit of a hyperbolic triangle of groups contains a non‐abelian free subgroup. We give two natural conditions, each of which ensures that the colimit of a non‐spherical triangle of groups either contains a non‐abelian free subgroup or is virtually solvable.","PeriodicalId":41208,"journal":{"name":"Transactions of the London Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2014-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1112/tlms/tlv005","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the London Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/tlms/tlv005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Triangles of groups have been introduced by Gersten and Stallings. They are, roughly speaking, a generalization of the amalgamated free product of two groups and occur in the framework of Corson diagrams. First, we prove an intersection theorem for Corson diagrams. Then, we focus on triangles of groups. It has been shown by Howie and Kopteva that the colimit of a hyperbolic triangle of groups contains a non‐abelian free subgroup. We give two natural conditions, each of which ensures that the colimit of a non‐spherical triangle of groups either contains a non‐abelian free subgroup or is virtually solvable.
群的非球面三角形的Tits替代
群的三角形由Gersten和Stallings引入。粗略地说,它们是两个群的合并自由积的概括,并且出现在Corson图的框架中。首先,我们证明了Corson图的一个交点定理。然后,我们关注群体的三角形。Howie和Kopteva证明了群的双曲三角形的极限包含一个非abel自由子群。我们给出了两个自然条件,每个条件都保证了群的非球面三角形的边界要么包含一个非阿贝尔自由子群,要么是虚可解的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
8
审稿时长
41 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信