Limits of Riemannian 4‐manifolds and the symplectic geometry of their twistor spaces

IF 1.1 Q1 MATHEMATICS
J. Fine
{"title":"Limits of Riemannian 4‐manifolds and the symplectic geometry of their twistor spaces","authors":"J. Fine","doi":"10.1112/tlm3.12003","DOIUrl":null,"url":null,"abstract":"The twistor space of a Riemannian 4‐manifold carries two almost complex structures, J+ and J− , and a natural closed 2‐form ω . This article studies limits of manifolds for which ω tames either J+ or J− . This amounts to a curvature inequality involving self‐dual Weyl curvature and Ricci curvature, and which is satisfied, for example, by all anti‐self‐dual Einstein manifolds with non‐zero scalar curvature. We prove that if a sequence of manifolds satisfying the curvature inequality converges to a hyperkähler limit X (in the C2 pointed topology), then X cannot contain a holomorphic 2‐sphere (for any of its hyperkähler complex structures). In particular, this rules out the formation of bubbles modelled on asymptotically locally Euclidean gravitational instantons in such families of metrics.","PeriodicalId":41208,"journal":{"name":"Transactions of the London Mathematical Society","volume":"4 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2016-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1112/tlm3.12003","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the London Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/tlm3.12003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The twistor space of a Riemannian 4‐manifold carries two almost complex structures, J+ and J− , and a natural closed 2‐form ω . This article studies limits of manifolds for which ω tames either J+ or J− . This amounts to a curvature inequality involving self‐dual Weyl curvature and Ricci curvature, and which is satisfied, for example, by all anti‐self‐dual Einstein manifolds with non‐zero scalar curvature. We prove that if a sequence of manifolds satisfying the curvature inequality converges to a hyperkähler limit X (in the C2 pointed topology), then X cannot contain a holomorphic 2‐sphere (for any of its hyperkähler complex structures). In particular, this rules out the formation of bubbles modelled on asymptotically locally Euclidean gravitational instantons in such families of metrics.
黎曼4流形的极限及其扭转空间的辛几何
黎曼4‐流形的扭转空间包含两个几乎复杂的结构J+和J−,以及一个自然闭合的2‐形ω。本文研究了ω为J+或J−时流形的极限。这相当于一个涉及自对偶Weyl曲率和Ricci曲率的曲率不等式,例如,所有具有非零标量曲率的反自对偶爱因斯坦流形都满足这个不等式。我们证明了如果满足曲率不等式的流形序列收敛于hyperkähler极限X(在C2点拓扑中),则X不能包含全纯2球(对于其任何hyperkähler复结构)。特别地,这排除了在这些度量族中以渐近局部欧几里得引力瞬子为模型的气泡的形成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
8
审稿时长
41 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信