{"title":"Limits of Riemannian 4‐manifolds and the symplectic geometry of their twistor spaces","authors":"J. Fine","doi":"10.1112/tlm3.12003","DOIUrl":null,"url":null,"abstract":"The twistor space of a Riemannian 4‐manifold carries two almost complex structures, J+ and J− , and a natural closed 2‐form ω . This article studies limits of manifolds for which ω tames either J+ or J− . This amounts to a curvature inequality involving self‐dual Weyl curvature and Ricci curvature, and which is satisfied, for example, by all anti‐self‐dual Einstein manifolds with non‐zero scalar curvature. We prove that if a sequence of manifolds satisfying the curvature inequality converges to a hyperkähler limit X (in the C2 pointed topology), then X cannot contain a holomorphic 2‐sphere (for any of its hyperkähler complex structures). In particular, this rules out the formation of bubbles modelled on asymptotically locally Euclidean gravitational instantons in such families of metrics.","PeriodicalId":41208,"journal":{"name":"Transactions of the London Mathematical Society","volume":"4 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2016-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1112/tlm3.12003","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the London Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/tlm3.12003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The twistor space of a Riemannian 4‐manifold carries two almost complex structures, J+ and J− , and a natural closed 2‐form ω . This article studies limits of manifolds for which ω tames either J+ or J− . This amounts to a curvature inequality involving self‐dual Weyl curvature and Ricci curvature, and which is satisfied, for example, by all anti‐self‐dual Einstein manifolds with non‐zero scalar curvature. We prove that if a sequence of manifolds satisfying the curvature inequality converges to a hyperkähler limit X (in the C2 pointed topology), then X cannot contain a holomorphic 2‐sphere (for any of its hyperkähler complex structures). In particular, this rules out the formation of bubbles modelled on asymptotically locally Euclidean gravitational instantons in such families of metrics.