Structure of the maximal -local geometry point-line collinearity graph

Q1 Mathematics
P. Rowley, Ben Wright
{"title":"Structure of the maximal -local geometry point-line collinearity graph","authors":"P. Rowley, Ben Wright","doi":"10.1112/S1461157016000036","DOIUrl":null,"url":null,"abstract":"The point-line collinearity graph ${\\mathcal{G}}$\n of the maximal 2-local geometry for the largest simple Fischer group, $Fi_{24}^{\\prime }$\n , is extensively analysed. For an arbitrary vertex $a$\n of ${\\mathcal{G}}$\n , the $i\\text{th}$\n -disc of $a$\n is described in detail. As a consequence, it follows that ${\\mathcal{G}}$\n has diameter $5$\n . The collapsed adjacency matrix of ${\\mathcal{G}}$\n is given as well as accompanying computer files which contain a wealth of data about ${\\mathcal{G}}$\n . Supplementary materials are available with this article.","PeriodicalId":54381,"journal":{"name":"Lms Journal of Computation and Mathematics","volume":"19 1","pages":"105-154"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1112/S1461157016000036","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lms Journal of Computation and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/S1461157016000036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The point-line collinearity graph ${\mathcal{G}}$ of the maximal 2-local geometry for the largest simple Fischer group, $Fi_{24}^{\prime }$ , is extensively analysed. For an arbitrary vertex $a$ of ${\mathcal{G}}$ , the $i\text{th}$ -disc of $a$ is described in detail. As a consequence, it follows that ${\mathcal{G}}$ has diameter $5$ . The collapsed adjacency matrix of ${\mathcal{G}}$ is given as well as accompanying computer files which contain a wealth of data about ${\mathcal{G}}$ . Supplementary materials are available with this article.
极大局部几何点线共线图的结构
广泛分析了最大简单Fischer群$Fi_{24}^{\prime}$的最大2-局部几何的点-线共线图${\mathcal{G}}$。对于${\mathcal{G}}$的任意顶点$a$,详细描述了$a$的$i\text{th}$ -圆盘。因此,可以得出${\mathcal{G}}$的直径$5$。给出了${\mathcal{G}}$的折叠邻接矩阵,并附带了包含关于${\mathcal{G}}$的大量数据的计算机文件。本文附有补充材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Lms Journal of Computation and Mathematics
Lms Journal of Computation and Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.60
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: LMS Journal of Computation and Mathematics has ceased publication. Its final volume is Volume 20 (2017). LMS Journal of Computation and Mathematics is an electronic-only resource that comprises papers on the computational aspects of mathematics, mathematical aspects of computation, and papers in mathematics which benefit from having been published electronically. The journal is refereed to the same high standard as the established LMS journals, and carries a commitment from the LMS to keep it archived into the indefinite future. Access is free until further notice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信