{"title":"JKL-ECM: an implementation of ECM using Hessian curves","authors":"H. Heer, G. McGuire, Oisín Robinson","doi":"10.1112/S1461157016000231","DOIUrl":null,"url":null,"abstract":"We present JKL-ECM, an implementation of the elliptic curve method of integer factorization which uses certain twisted Hessian curves in a family studied by Jeon, Kim and Lee. This implementation takes advantage of torsion subgroup injection for families of elliptic curves over a quartic number field, in addition to the ‘small parameter’ speedup. We produced thousands of curves with torsion $\\mathbb{Z}/6\\mathbb{Z}\\oplus \\mathbb{Z}/6\\mathbb{Z}$ and small parameters in twisted Hessian form, which admit curve arithmetic that is ‘almost’ as fast as that of twisted Edwards form. This allows JKL-ECM to compete with GMP-ECM for finding large prime factors. Also, JKL-ECM, based on GMP, accepts integers of arbitrary size. We classify the torsion subgroups of Hessian curves over $\\mathbb{Q}$ and further examine torsion properties of the curves described by Jeon, Kim and Lee. In addition, the high-performance curves with torsion $\\mathbb{Z}/2\\mathbb{Z}\\oplus \\mathbb{Z}/8\\mathbb{Z}$ of Bernstein et al. are completely recovered by the $\\mathbb{Z}/4\\mathbb{Z}\\oplus \\mathbb{Z}/8\\mathbb{Z}$ family of Jeon, Kim and Lee, and hundreds more curves are produced besides, all with small parameters and base points.","PeriodicalId":54381,"journal":{"name":"Lms Journal of Computation and Mathematics","volume":"19 1","pages":"83-99"},"PeriodicalIF":0.0000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1112/S1461157016000231","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lms Journal of Computation and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/S1461157016000231","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3
Abstract
We present JKL-ECM, an implementation of the elliptic curve method of integer factorization which uses certain twisted Hessian curves in a family studied by Jeon, Kim and Lee. This implementation takes advantage of torsion subgroup injection for families of elliptic curves over a quartic number field, in addition to the ‘small parameter’ speedup. We produced thousands of curves with torsion $\mathbb{Z}/6\mathbb{Z}\oplus \mathbb{Z}/6\mathbb{Z}$ and small parameters in twisted Hessian form, which admit curve arithmetic that is ‘almost’ as fast as that of twisted Edwards form. This allows JKL-ECM to compete with GMP-ECM for finding large prime factors. Also, JKL-ECM, based on GMP, accepts integers of arbitrary size. We classify the torsion subgroups of Hessian curves over $\mathbb{Q}$ and further examine torsion properties of the curves described by Jeon, Kim and Lee. In addition, the high-performance curves with torsion $\mathbb{Z}/2\mathbb{Z}\oplus \mathbb{Z}/8\mathbb{Z}$ of Bernstein et al. are completely recovered by the $\mathbb{Z}/4\mathbb{Z}\oplus \mathbb{Z}/8\mathbb{Z}$ family of Jeon, Kim and Lee, and hundreds more curves are produced besides, all with small parameters and base points.
期刊介绍:
LMS Journal of Computation and Mathematics has ceased publication. Its final volume is Volume 20 (2017). LMS Journal of Computation and Mathematics is an electronic-only resource that comprises papers on the computational aspects of mathematics, mathematical aspects of computation, and papers in mathematics which benefit from having been published electronically. The journal is refereed to the same high standard as the established LMS journals, and carries a commitment from the LMS to keep it archived into the indefinite future. Access is free until further notice.