A classification of inductive limit C∗$C^{*}$ ‐algebras with ideal property

IF 1.1 Q1 MATHEMATICS
G. Gong, Chunlan Jiang, Liangqing Li
{"title":"A classification of inductive limit C∗$C^{*}$ ‐algebras with ideal property","authors":"G. Gong, Chunlan Jiang, Liangqing Li","doi":"10.1112/tlm3.12048","DOIUrl":null,"url":null,"abstract":"Let A$A$ be an AH algebra A=limn→∞(An=⨁i=1tnPn,iM[n,i](C(Xn,i))Pn,i,ϕn,m)$A=\\lim \\nolimits _{n\\rightarrow \\infty }(A_{n}=\\bigoplus \\nolimits _{i=1} ^{t_{n}}P_{n,i} M_{[n,i]}(C(X_{n,i}))P_{n,i}, \\phi _{n,m})$ , where Xn,i$X_{n,i}$ are compact metric spaces, tn$t_{n}$ and [n,i]$[n,i]$ are positive integers, Pn,i∈M[n,i](C(Xn,i))$P_{n,i}\\in M_{[n,i]} (C(X_{n,i}))$ are projections, and ϕn,m:An→Am$\\phi _{n,m}: A_n\\rightarrow A_m$ (for m>n$m>n$ ) are homomorphisms satisfying ϕn,m=ϕm−1,m∘ϕm−2,m−1∘⋯∘ϕn+1,n+2∘ϕn,n+1$\\phi _{n,m}=\\phi _{m-1,m} \\circ\\; \\phi _{m-2,m-1}\\;\\circ\\; \\cdots \\;\\circ\\; \\phi _{n+1,n+2}\\;\\circ\\; \\phi _{n, n+1}$ . Suppose that A$A$ has the ideal property: each closed two‐sided ideal of A$A$ is generated by the projections inside the ideal, as a closed two‐sided ideal (see Pacnicn, Pacific J. Math. 192 (2000), 159–183). In this article, we will classify all AH algebras with the ideal property (of no dimension growth — that is, supn,idim(Xn,i)<+∞$sup_{n,i}dim(X_{n,i})<+\\infty$ ). This result generalizes and unifies the classification of AH algebras of real rank zero in Dadarlat and Gong (Geom. Funct. Anal. 7 (1997), 646–711), Elliott and Gong (Ann. of Math. (2) 144 (1996), 497–610) and the classification of simple AH algebras in Elliott, Gong and Li (Invent. Math. 168 (2007), no. 2, 249–320), and Gong (Doc. Math. 7 (2002), 255–461). This completes one of two important possible generalizations of Elliott, Gong and Li (Invent. Math. 168 (2007), no. 2, 249–320) suggested in the introduction of Elliott, Gong and Li (Invent. Math. 168 (2007), no. 2, 249–320). The invariants for the classification include the scaled ordered total K$K$ ‐group (K̲(A),K̲(A)+,ΣA)$(\\underline{K}(A), \\underline{K}(A)_{+},\\Sigma A)$ (as already used in the real rank zero case in Dadarlat and Gong, Geom. Funct. Anal. 7 (1997) 646–711), for each [p]∈ΣA$[p]\\in \\Sigma A$ , the tracial state space T(pAp)$T(pAp)$ of the cut down algebra pAp$pAp$ with a certain compatibility, (which is used by Steven (Field Inst. Commun. 20 (1998), 105–148), and Ji and Jang (Canad. J. Math. 63 (2011) no. 2, 381–412) for AI algebras with the ideal property), and a new ingredient, the invariant U(pAp)/DU(pAp)¯$U(pAp)/\\overline{DU(pAp)}$ with a certain compatibility condition, where DU(pAp)¯$\\overline{DU(pAp)}$ is the closure of commutator subgroup DU(pAp)$DU(pAp)$ of the unitary group U(pAp)$U(pAp)$ of the cut down algebra pAp$pAp$ . In Gong, Jiang and Li (Ann. K‐Theory 5 (2020), no.1, 43–78), a counterexample is presented to show that this new ingredient must be included in the invariant. The discovery of this new invariant is analogous to that of the order structure on the total K‐theory when one advances from the classification of simple real rank zero C∗$C^*$ ‐algebras to that of non‐simple real rank zero C∗$C^*$ ‐algebras in Dadarlat and Gong (Geom. Funct. Anal. 7 (1997), 646–711), Dadarlat and Loring (Duke Math. J. 84 (1996), 355–377), Eilers (J. Funct. Anal. 139 (1996), 325–348), and Gong (J. Funct. Anal. 152 (1998), 281–329) (see Introduction below). Let us point out that the Hausdorffified algebraic K1$K_1$ ‐group U(A)/DU(A)¯$U(A)/\\overline{DU(A)}$ , was first used by Nielsen and Thomsen to classify homomorphisms up to approximately unitary equivalent. This classification serves as the uniqueness theorem for the classification of simple A T$\\mathbb {T}$ algebras in Nielsen and Thomsen (Expo. Math. 14 (1996), 17–56).","PeriodicalId":41208,"journal":{"name":"Transactions of the London Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2016-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the London Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/tlm3.12048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

Abstract

Let A$A$ be an AH algebra A=limn→∞(An=⨁i=1tnPn,iM[n,i](C(Xn,i))Pn,i,ϕn,m)$A=\lim \nolimits _{n\rightarrow \infty }(A_{n}=\bigoplus \nolimits _{i=1} ^{t_{n}}P_{n,i} M_{[n,i]}(C(X_{n,i}))P_{n,i}, \phi _{n,m})$ , where Xn,i$X_{n,i}$ are compact metric spaces, tn$t_{n}$ and [n,i]$[n,i]$ are positive integers, Pn,i∈M[n,i](C(Xn,i))$P_{n,i}\in M_{[n,i]} (C(X_{n,i}))$ are projections, and ϕn,m:An→Am$\phi _{n,m}: A_n\rightarrow A_m$ (for m>n$m>n$ ) are homomorphisms satisfying ϕn,m=ϕm−1,m∘ϕm−2,m−1∘⋯∘ϕn+1,n+2∘ϕn,n+1$\phi _{n,m}=\phi _{m-1,m} \circ\; \phi _{m-2,m-1}\;\circ\; \cdots \;\circ\; \phi _{n+1,n+2}\;\circ\; \phi _{n, n+1}$ . Suppose that A$A$ has the ideal property: each closed two‐sided ideal of A$A$ is generated by the projections inside the ideal, as a closed two‐sided ideal (see Pacnicn, Pacific J. Math. 192 (2000), 159–183). In this article, we will classify all AH algebras with the ideal property (of no dimension growth — that is, supn,idim(Xn,i)<+∞$sup_{n,i}dim(X_{n,i})<+\infty$ ). This result generalizes and unifies the classification of AH algebras of real rank zero in Dadarlat and Gong (Geom. Funct. Anal. 7 (1997), 646–711), Elliott and Gong (Ann. of Math. (2) 144 (1996), 497–610) and the classification of simple AH algebras in Elliott, Gong and Li (Invent. Math. 168 (2007), no. 2, 249–320), and Gong (Doc. Math. 7 (2002), 255–461). This completes one of two important possible generalizations of Elliott, Gong and Li (Invent. Math. 168 (2007), no. 2, 249–320) suggested in the introduction of Elliott, Gong and Li (Invent. Math. 168 (2007), no. 2, 249–320). The invariants for the classification include the scaled ordered total K$K$ ‐group (K̲(A),K̲(A)+,ΣA)$(\underline{K}(A), \underline{K}(A)_{+},\Sigma A)$ (as already used in the real rank zero case in Dadarlat and Gong, Geom. Funct. Anal. 7 (1997) 646–711), for each [p]∈ΣA$[p]\in \Sigma A$ , the tracial state space T(pAp)$T(pAp)$ of the cut down algebra pAp$pAp$ with a certain compatibility, (which is used by Steven (Field Inst. Commun. 20 (1998), 105–148), and Ji and Jang (Canad. J. Math. 63 (2011) no. 2, 381–412) for AI algebras with the ideal property), and a new ingredient, the invariant U(pAp)/DU(pAp)¯$U(pAp)/\overline{DU(pAp)}$ with a certain compatibility condition, where DU(pAp)¯$\overline{DU(pAp)}$ is the closure of commutator subgroup DU(pAp)$DU(pAp)$ of the unitary group U(pAp)$U(pAp)$ of the cut down algebra pAp$pAp$ . In Gong, Jiang and Li (Ann. K‐Theory 5 (2020), no.1, 43–78), a counterexample is presented to show that this new ingredient must be included in the invariant. The discovery of this new invariant is analogous to that of the order structure on the total K‐theory when one advances from the classification of simple real rank zero C∗$C^*$ ‐algebras to that of non‐simple real rank zero C∗$C^*$ ‐algebras in Dadarlat and Gong (Geom. Funct. Anal. 7 (1997), 646–711), Dadarlat and Loring (Duke Math. J. 84 (1996), 355–377), Eilers (J. Funct. Anal. 139 (1996), 325–348), and Gong (J. Funct. Anal. 152 (1998), 281–329) (see Introduction below). Let us point out that the Hausdorffified algebraic K1$K_1$ ‐group U(A)/DU(A)¯$U(A)/\overline{DU(A)}$ , was first used by Nielsen and Thomsen to classify homomorphisms up to approximately unitary equivalent. This classification serves as the uniqueness theorem for the classification of simple A T$\mathbb {T}$ algebras in Nielsen and Thomsen (Expo. Math. 14 (1996), 17–56).
一类具有理想性质的归纳极限C * $C^{*}$‐代数
让A$A$ 是AH代数A=limn→∞(an = i=1tnPn,iM[n,i](C(Xn,i)) n,i, n,m)$A=\lim \nolimits _{n\rightarrow \infty }(A_{n}=\bigoplus \nolimits _{i=1} ^{t_{n}}P_{n,i} M_{[n,i]}(C(X_{n,i}))P_{n,i}, \phi _{n,m})$ ,其中Xn i$X_{n,i}$ 是紧化度量空间吗$t_{n}$ 和[n,i]$[n,i]$ 均为正整数,Pn,i∈M[n,i](C(Xn,i))$P_{n,i}\in M_{[n,i]} (C(X_{n,i}))$ 是投影,而ϕn,m:An→Am$\phi _{n,m}: A_n\rightarrow A_m$ (对于m b> n$m>n$ )都是满足下列条件的同态:ϕn,m=ϕm - 1,m°ϕm - 2,m - 1°⋯°ϕn+1,n+2°ϕn,n+1$\phi _{n,m}=\phi _{m-1,m} \circ\; \phi _{m-2,m-1}\;\circ\; \cdots \;\circ\; \phi _{n+1,n+2}\;\circ\; \phi _{n, n+1}$ . 假设A$A$ 具有理想性质:A$A$ 是由理想内部的投影产生的,作为一个封闭的双面理想(参见Pacnicn, Pacific J. Math. 192(2000), 159-183)。在本文中,我们将对所有具有理想性质(无维增长-即supn,idim(Xn,i)<+∞)的AH代数进行分类$sup_{n,i}dim(X_{n,i})<+\infty$ ). 这一结果推广并统一了Dadarlat和Gong (Geom中实秩为零的AH代数的分类。函数。《中国科学》第7期(1997),646-711页)。数学。(2) 144(1996), 497-610)和Elliott, Gong和Li (Invent.)的简单AH代数的分类。数学。168(2007),第1期。2, 249-320);数学。7(2002),255-461)。这完成了艾略特的两个可能的重要概括之一,龚和李(发明)。数学。168(2007),第1期。在艾略特,龚和李(发明)的介绍中提出。数学。168(2007),第1期。2, 249-320)。分类的不变量包括按比例排序的总K$K$ ‐group (K * (A),K * (A)+,ΣA)$(\underline{K}(A), \underline{K}(A)_{+},\Sigma A)$ (就像在达达拉特和龚金的实际零级案例中已经使用的那样。函数。肛门。7(1997)646-711),对于每个[p]∈ΣA$[p]\in \Sigma A$ ,迹迹状态空间T(pAp)$T(pAp)$ 简化代数pAp$pAp$ 具有一定的兼容性,(Steven (Field institute . common . 20(1998), 105-148)和Ji and Jang(加拿大)。数学学报。63 (2011)no. 6。(2, 381-412)对于具有理想性质的AI代数),以及一个新的成分,不变量U(pAp)/DU(pAp)¯$U(pAp)/\overline{DU(pAp)}$ 具有一定的相容条件,其中DU(pAp)¯$\overline{DU(pAp)}$ 为换向子群DU(pAp)的闭包$DU(pAp)$ 酉群U(pAp)$U(pAp)$ 简化代数pAp$pAp$ . 在龚,蒋和李安。K‐Theory 5 (2020), no。1, 43-78),提出了一个反例来表明这个新的成分必须包含在不变量中。这个新不变量的发现类似于从简单实数秩0 C *的分类出发的全K理论上的阶结构的发现$C^*$ 非简单实数秩为0 C *的代数$C^*$ - Dadarlat和Gong (Geom)中的代数。函数。Anal. 7 (1997), 646-711), Dadarlat and Loring(杜克数学。)[j] .(1996), 355-377)。《论文集》139(1996),325-348),龚(J. Funct。肛门。152(1998),281-329)(见下面的介绍)。让我们指出,hausdorfffied代数K1$K_1$ ‐组U(A)/DU(A)¯$U(A)/\overline{DU(A)}$ 首先由Nielsen和Thomsen用来对同态进行分类,直到近似幺正等价。这种分类作为简单A - T分类的唯一性定理$\mathbb {T}$ 代数在Nielsen和Thomsen (Expo)。数学。14(1996),17-56。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
8
审稿时长
41 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信