Topological mixing properties of rank‐one subshifts

IF 1.1 Q1 MATHEMATICS
Su Gao, Caleb Ziegler
{"title":"Topological mixing properties of rank‐one subshifts","authors":"Su Gao, Caleb Ziegler","doi":"10.1112/tlm3.12016","DOIUrl":null,"url":null,"abstract":"We study topological mixing properties and the maximal equicontinuous factor of rank‐one subshifts as topological dynamical systems. We show that the maximal equicontinuous factor of a rank‐one subshift is finite. We also determine all the finite factors of a rank‐one shift with a condition involving the cutting and spacer parameters. For rank‐one subshifts with bounded spacer parameter we completely characterize weak mixing and mixing. For rank‐one subshifts with unbounded spacer parameter we prove some sufficient conditions for weak mixing and mixing. We also construct some examples showing that the characterizations for the bounded spacer parameter case do not generalize to the unbounded spacer parameter case.","PeriodicalId":41208,"journal":{"name":"Transactions of the London Mathematical Society","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2018-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1112/tlm3.12016","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the London Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/tlm3.12016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

Abstract

We study topological mixing properties and the maximal equicontinuous factor of rank‐one subshifts as topological dynamical systems. We show that the maximal equicontinuous factor of a rank‐one subshift is finite. We also determine all the finite factors of a rank‐one shift with a condition involving the cutting and spacer parameters. For rank‐one subshifts with bounded spacer parameter we completely characterize weak mixing and mixing. For rank‐one subshifts with unbounded spacer parameter we prove some sufficient conditions for weak mixing and mixing. We also construct some examples showing that the characterizations for the bounded spacer parameter case do not generalize to the unbounded spacer parameter case.
秩一子位移的拓扑混合性质
我们研究了作为拓扑动力系统的秩一子位移的拓扑混合性质和最大等连续因子。我们证明了秩1子移位的最大等连续因子是有限的。我们还确定了与切割和间隔参数有关的条件下阶一位移的所有有限因子。对于具有有界间隔参数的1阶子位移,我们完全刻画了弱混合和混合。对于具有无界间隔参数的秩一子位移,我们证明了弱混合和混合的一些充分条件。我们还构造了一些例子,表明有界间隔参数情况的特征不能推广到无界间隔参数情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
8
审稿时长
41 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信