Class numbers of real cyclotomic fields of composite conductor

Q1 Mathematics
John C. Miller
{"title":"Class numbers of real cyclotomic fields of composite conductor","authors":"John C. Miller","doi":"10.1112/S1461157014000382","DOIUrl":null,"url":null,"abstract":"Until recently, the ‘plus part’ of the class numbers of cyclotomic fields had only been determined for fields of root discriminant small enough to be treated by Odlyzko’s discriminant bounds.However, by finding lower bounds for sums over prime ideals of the Hilbert class field, we can now establish upper bounds for class numbers of fields of larger discriminant. This new analytic upper bound, together with algebraic arguments concerning the divisibility properties of class numbers, allows us to unconditionally determine the class numbers of many cyclotomic fields that had previously been untreatable by any known method.In this paper, we study in particular the cyclotomic fields of composite conductor.","PeriodicalId":54381,"journal":{"name":"Lms Journal of Computation and Mathematics","volume":"17 1","pages":"404-417"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1112/S1461157014000382","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lms Journal of Computation and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/S1461157014000382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 11

Abstract

Until recently, the ‘plus part’ of the class numbers of cyclotomic fields had only been determined for fields of root discriminant small enough to be treated by Odlyzko’s discriminant bounds.However, by finding lower bounds for sums over prime ideals of the Hilbert class field, we can now establish upper bounds for class numbers of fields of larger discriminant. This new analytic upper bound, together with algebraic arguments concerning the divisibility properties of class numbers, allows us to unconditionally determine the class numbers of many cyclotomic fields that had previously been untreatable by any known method.In this paper, we study in particular the cyclotomic fields of composite conductor.
复合导体实环切场的类数
直到最近,切环场的类数的“加号”部分只被确定为足够小的根判别域,可以用Odlyzko的判别界处理。然而,通过寻找希尔伯特类域的素数理想和的下界,我们现在可以建立大判别域的类数的上界。这个新的解析上界,连同关于类数的可整除性的代数论证,使我们能够无条件地确定许多以前用任何已知方法都无法处理的环切场的类数。本文重点研究了复合导体的分圈场。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Lms Journal of Computation and Mathematics
Lms Journal of Computation and Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.60
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: LMS Journal of Computation and Mathematics has ceased publication. Its final volume is Volume 20 (2017). LMS Journal of Computation and Mathematics is an electronic-only resource that comprises papers on the computational aspects of mathematics, mathematical aspects of computation, and papers in mathematics which benefit from having been published electronically. The journal is refereed to the same high standard as the established LMS journals, and carries a commitment from the LMS to keep it archived into the indefinite future. Access is free until further notice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信