Oscillation of differential equations with non-monotone retarded arguments

Q1 Mathematics
G. Chatzarakis, Ö. Öcalan
{"title":"Oscillation of differential equations with non-monotone retarded arguments","authors":"G. Chatzarakis, Ö. Öcalan","doi":"10.1112/S1461157015000200","DOIUrl":null,"url":null,"abstract":"Consider the first-order retarded differential equation $$\\begin{eqnarray}x^{\\prime }(t)+p(t)x({\\it\\tau}(t))=0,\\quad t\\geqslant t_{0},\\end{eqnarray}$$ where $p(t)\\geqslant 0$ and ${\\it\\tau}(t)$ is a function of positive real numbers such that ${\\it\\tau}(t)\\leqslant t$ for $t\\geqslant t_{0}$ , and $\\lim _{t\\rightarrow \\infty }{\\it\\tau}(t)=\\infty$ . Under the assumption that the retarded argument is non-monotone, a new oscillation criterion, involving $\\liminf$ , is established when the well-known oscillation condition $$\\begin{eqnarray}\\liminf _{t\\rightarrow \\infty }\\int _{{\\it\\tau}(t)}^{t}p(s)\\,ds>\\frac{1}{e}\\end{eqnarray}$$ is not satisfied. An example illustrating the result is also given.","PeriodicalId":54381,"journal":{"name":"Lms Journal of Computation and Mathematics","volume":"19 1","pages":"660-666"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1112/S1461157015000200","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lms Journal of Computation and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/S1461157015000200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5

Abstract

Consider the first-order retarded differential equation $$\begin{eqnarray}x^{\prime }(t)+p(t)x({\it\tau}(t))=0,\quad t\geqslant t_{0},\end{eqnarray}$$ where $p(t)\geqslant 0$ and ${\it\tau}(t)$ is a function of positive real numbers such that ${\it\tau}(t)\leqslant t$ for $t\geqslant t_{0}$ , and $\lim _{t\rightarrow \infty }{\it\tau}(t)=\infty$ . Under the assumption that the retarded argument is non-monotone, a new oscillation criterion, involving $\liminf$ , is established when the well-known oscillation condition $$\begin{eqnarray}\liminf _{t\rightarrow \infty }\int _{{\it\tau}(t)}^{t}p(s)\,ds>\frac{1}{e}\end{eqnarray}$$ is not satisfied. An example illustrating the result is also given.
非单调迟滞参数微分方程的振动
考虑一阶延迟微分方程$$\begin{eqnarray}x^{\prime }(t)+p(t)x({\it\tau}(t))=0,\quad t\geqslant t_{0},\end{eqnarray}$$,其中$p(t)\geqslant 0$和${\it\tau}(t)$是正实数的函数,例如${\it\tau}(t)\leqslant t$代表$t\geqslant t_{0}$和$\lim _{t\rightarrow \infty }{\it\tau}(t)=\infty$。在迟滞参数非单调的假设下,当已知的振荡条件$$\begin{eqnarray}\liminf _{t\rightarrow \infty }\int _{{\it\tau}(t)}^{t}p(s)\,ds>\frac{1}{e}\end{eqnarray}$$不满足时,建立了一个新的振荡判据$\liminf$。最后给出了一个算例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Lms Journal of Computation and Mathematics
Lms Journal of Computation and Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.60
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: LMS Journal of Computation and Mathematics has ceased publication. Its final volume is Volume 20 (2017). LMS Journal of Computation and Mathematics is an electronic-only resource that comprises papers on the computational aspects of mathematics, mathematical aspects of computation, and papers in mathematics which benefit from having been published electronically. The journal is refereed to the same high standard as the established LMS journals, and carries a commitment from the LMS to keep it archived into the indefinite future. Access is free until further notice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信