Piecewise Legendre spectral-collocation method for Volterra integro-differential equations

Q1 Mathematics
Z. Gu, Yanping Chen
{"title":"Piecewise Legendre spectral-collocation method for Volterra integro-differential equations","authors":"Z. Gu, Yanping Chen","doi":"10.1112/S1461157014000485","DOIUrl":null,"url":null,"abstract":"Our main purpose in this paper is to propose the piecewise Legendre spectral-collocation method to solve Volterra integro-differential equations. We provide convergence analysis to show that the numerical errors in our method decay in $h^{m}N^{-m}$ -version rate. These results are better than the piecewise polynomial collocation method and the global Legendre spectral-collocation method. The provided numerical examples confirm these theoretical results.","PeriodicalId":54381,"journal":{"name":"Lms Journal of Computation and Mathematics","volume":"18 1","pages":"231-249"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1112/S1461157014000485","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lms Journal of Computation and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/S1461157014000485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 11

Abstract

Our main purpose in this paper is to propose the piecewise Legendre spectral-collocation method to solve Volterra integro-differential equations. We provide convergence analysis to show that the numerical errors in our method decay in $h^{m}N^{-m}$ -version rate. These results are better than the piecewise polynomial collocation method and the global Legendre spectral-collocation method. The provided numerical examples confirm these theoretical results.
Volterra积分微分方程的分段Legendre谱配点法
本文的主要目的是提出求解Volterra积分微分方程的分段勒让德谱配点法。我们提供了收敛性分析,表明我们的方法中的数值误差以$h^{m}N^{-m}$ -版本率衰减。这些结果优于分段多项式配点法和全局勒让德谱配点法。给出的数值算例证实了这些理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Lms Journal of Computation and Mathematics
Lms Journal of Computation and Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.60
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: LMS Journal of Computation and Mathematics has ceased publication. Its final volume is Volume 20 (2017). LMS Journal of Computation and Mathematics is an electronic-only resource that comprises papers on the computational aspects of mathematics, mathematical aspects of computation, and papers in mathematics which benefit from having been published electronically. The journal is refereed to the same high standard as the established LMS journals, and carries a commitment from the LMS to keep it archived into the indefinite future. Access is free until further notice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信