Bounds for zeros of Meixner and Kravchuk polynomials

Q1 Mathematics
A. Jooste, K. Jordaan
{"title":"Bounds for zeros of Meixner and Kravchuk polynomials","authors":"A. Jooste, K. Jordaan","doi":"10.1112/S1461157013000260","DOIUrl":null,"url":null,"abstract":"The zeros of certain different sequences of orthogonal polynomials interlace in a well-defined way. The study of this phenomenon and the conditions under which it holds lead to a set of points that can be applied as bounds for the extreme zeros of the polynomials. We consider different sequences of the discrete orthogonal Meixner and Kravchuk polynomials and use mixed three-term recurrence relations, satisfied by the polynomials under consideration, to identify bounds for the extreme zeros of Meixner and Kravchuk polynomials.","PeriodicalId":54381,"journal":{"name":"Lms Journal of Computation and Mathematics","volume":"17 1","pages":"47-57"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1112/S1461157013000260","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lms Journal of Computation and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1112/S1461157013000260","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 11

Abstract

The zeros of certain different sequences of orthogonal polynomials interlace in a well-defined way. The study of this phenomenon and the conditions under which it holds lead to a set of points that can be applied as bounds for the extreme zeros of the polynomials. We consider different sequences of the discrete orthogonal Meixner and Kravchuk polynomials and use mixed three-term recurrence relations, satisfied by the polynomials under consideration, to identify bounds for the extreme zeros of Meixner and Kravchuk polynomials.
mexner和Kravchuk多项式的零点界
某些不同的正交多项式序列的零以一种定义良好的方式相交。对这一现象的研究和它所适用的条件导致了一组点,这些点可以作为多项式的极值零点的边界。我们考虑离散正交Meixner和Kravchuk多项式的不同序列,并利用所考虑的多项式所满足的混合三项递推关系来确定Meixner和Kravchuk多项式的极值零点的界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Lms Journal of Computation and Mathematics
Lms Journal of Computation and Mathematics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.60
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: LMS Journal of Computation and Mathematics has ceased publication. Its final volume is Volume 20 (2017). LMS Journal of Computation and Mathematics is an electronic-only resource that comprises papers on the computational aspects of mathematics, mathematical aspects of computation, and papers in mathematics which benefit from having been published electronically. The journal is refereed to the same high standard as the established LMS journals, and carries a commitment from the LMS to keep it archived into the indefinite future. Access is free until further notice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信