{"title":"Multi-Discriminator Active Adversarial Network for Multi-Center Brain Disease Diagnosis","authors":"Qi Zhu;Qiming Yang;Mingming Wang;Xiangyu Xu;Yuwu Lu;Wei Shao;Daoqiang Zhang","doi":"10.1109/TBDATA.2023.3294000","DOIUrl":null,"url":null,"abstract":"Multi-center analysis has attracted increasing attention in brain disease diagnosis, because it provides effective approaches to improve disease diagnostic performance by making use of the information from different centers. However, in practical multi-center applications, data uncertainty is more common than that in single center, which brings challenge to robust modeling of diagnosis. In this article, we proposed a multi-discriminator active adversarial network (MDAAN) to alleviate the uncertainties at the center, feature, and label levels for multi-center brain disease diagnosis. First, we extract the latent invariant representation of the source center and target center to reduce domain shift by adversarial learning strategy. Second, the proposed method adaptively evaluates the contribution of different source centers in fusion by measuring data distribution difference between source and target center. Moreover, only the hard learning samples in target center are identified to label with low sample annotation cost. Finally, we treat the selected samples as the auxiliary domain to alleviate the negative transfer and improve the robustness of the multi-center model. We extensively compare the proposed approach with several state-of-the-art multi-center methods on the five-center schizophrenia dataset, and the results demonstrate that our method is superior to the previous methods in identifying brain disease.","PeriodicalId":13106,"journal":{"name":"IEEE Transactions on Big Data","volume":"9 6","pages":"1575-1585"},"PeriodicalIF":7.5000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Big Data","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10179164/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-center analysis has attracted increasing attention in brain disease diagnosis, because it provides effective approaches to improve disease diagnostic performance by making use of the information from different centers. However, in practical multi-center applications, data uncertainty is more common than that in single center, which brings challenge to robust modeling of diagnosis. In this article, we proposed a multi-discriminator active adversarial network (MDAAN) to alleviate the uncertainties at the center, feature, and label levels for multi-center brain disease diagnosis. First, we extract the latent invariant representation of the source center and target center to reduce domain shift by adversarial learning strategy. Second, the proposed method adaptively evaluates the contribution of different source centers in fusion by measuring data distribution difference between source and target center. Moreover, only the hard learning samples in target center are identified to label with low sample annotation cost. Finally, we treat the selected samples as the auxiliary domain to alleviate the negative transfer and improve the robustness of the multi-center model. We extensively compare the proposed approach with several state-of-the-art multi-center methods on the five-center schizophrenia dataset, and the results demonstrate that our method is superior to the previous methods in identifying brain disease.
期刊介绍:
The IEEE Transactions on Big Data publishes peer-reviewed articles focusing on big data. These articles present innovative research ideas and application results across disciplines, including novel theories, algorithms, and applications. Research areas cover a wide range, such as big data analytics, visualization, curation, management, semantics, infrastructure, standards, performance analysis, intelligence extraction, scientific discovery, security, privacy, and legal issues specific to big data. The journal also prioritizes applications of big data in fields generating massive datasets.