Distributional Semantic Models for Affective Text Analysis

Nikos Malandrakis, A. Potamianos, Elias Iosif, Shrikanth S. Narayanan
{"title":"Distributional Semantic Models for Affective Text Analysis","authors":"Nikos Malandrakis, A. Potamianos, Elias Iosif, Shrikanth S. Narayanan","doi":"10.1109/TASL.2013.2277931","DOIUrl":null,"url":null,"abstract":"We present an affective text analysis model that can directly estimate and combine affective ratings of multi-word terms, with application to the problem of sentence polarity/semantic orientation detection. Starting from a hierarchical compositional method for generating sentence ratings, we expand the model by adding multi-word terms that can capture non-compositional semantics. The method operates similarly to a bigram language model, using bigram terms or backing off to unigrams based on a (degree of) compositionality criterion. The affective ratings for n-gram terms of different orders are estimated via a corpus-based method using distributional semantic similarity metrics between unseen words and a set of seed words. N-gram ratings are then combined into sentence ratings via simple algebraic formulas. The proposed framework produces state-of-the-art results for word-level tasks in English and German and the sentence-level news headlines classification SemEval'07-Task14 task. The inclusion of bigram terms to the model provides significant performance improvement, even if no term selection is applied.","PeriodicalId":55014,"journal":{"name":"IEEE Transactions on Audio Speech and Language Processing","volume":"21 1","pages":"2379-2392"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TASL.2013.2277931","citationCount":"69","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Audio Speech and Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TASL.2013.2277931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 69

Abstract

We present an affective text analysis model that can directly estimate and combine affective ratings of multi-word terms, with application to the problem of sentence polarity/semantic orientation detection. Starting from a hierarchical compositional method for generating sentence ratings, we expand the model by adding multi-word terms that can capture non-compositional semantics. The method operates similarly to a bigram language model, using bigram terms or backing off to unigrams based on a (degree of) compositionality criterion. The affective ratings for n-gram terms of different orders are estimated via a corpus-based method using distributional semantic similarity metrics between unseen words and a set of seed words. N-gram ratings are then combined into sentence ratings via simple algebraic formulas. The proposed framework produces state-of-the-art results for word-level tasks in English and German and the sentence-level news headlines classification SemEval'07-Task14 task. The inclusion of bigram terms to the model provides significant performance improvement, even if no term selection is applied.
情感文本分析的分布语义模型
我们提出了一个情感文本分析模型,该模型可以直接估计和组合多词术语的情感等级,并应用于句子极性/语义方向检测问题。从生成句子评级的分层组合方法开始,我们通过添加可以捕获非组合语义的多词术语来扩展模型。该方法的操作类似于双字母语言模型,使用双字母术语或根据(程度)组合性标准退回到单字母。通过基于语料库的方法,使用未见词和一组种子词之间的分布语义相似性度量来估计不同顺序的n-gram词的情感评级。然后通过简单的代数公式将N-gram评级组合成句子评级。该框架为英语和德语的单词级任务以及句子级新闻标题分类SemEval'07-Task14任务提供了最先进的结果。即使没有应用术语选择,在模型中包含双元词也能显著提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Audio Speech and Language Processing
IEEE Transactions on Audio Speech and Language Processing 工程技术-工程:电子与电气
自引率
0.00%
发文量
0
审稿时长
24.0 months
期刊介绍: The IEEE Transactions on Audio, Speech and Language Processing covers the sciences, technologies and applications relating to the analysis, coding, enhancement, recognition and synthesis of audio, music, speech and language. In particular, audio processing also covers auditory modeling, acoustic modeling and source separation. Speech processing also covers speech production and perception, adaptation, lexical modeling and speaker recognition. Language processing also covers spoken language understanding, translation, summarization, mining, general language modeling, as well as spoken dialog systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信