Room Reverberation Reconstruction: Interpolation of the Early Part Using Compressed Sensing

R. Mignot, L. Daudet, F. Ollivier
{"title":"Room Reverberation Reconstruction: Interpolation of the Early Part Using Compressed Sensing","authors":"R. Mignot, L. Daudet, F. Ollivier","doi":"10.1109/TASL.2013.2273662","DOIUrl":null,"url":null,"abstract":"This paper deals with the interpolation of the Room Impulse Responses (RIRs) within a whole volume, from as few measurements as possible, and without the knowledge of the geometry of the room. We focus on the early reflections of the RIRs, that have the key property of being sparse in the time domain: this can be exploited in a framework of model-based Compressed Sensing. Starting from a set of RIRs randomly sampled in the spatial domain of interest by a 3D microphone array, we propose a modified Matching Pursuit algorithm to estimate the position of a small set of virtual sources. Then, the reconstruction of the RIRs at interpolated positions is performed using a projection onto a basis of monopoles, which correspond to the estimated virtual sources. An extension of the proposed algorithm allows the interpolation of the positions of both source and receiver, using the acquisition of four different source positions. This approach is validated both by numerical examples, and by experimental measurements using a 3D array with up to 120 microphones.","PeriodicalId":55014,"journal":{"name":"IEEE Transactions on Audio Speech and Language Processing","volume":"21 1","pages":"2301-2312"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TASL.2013.2273662","citationCount":"50","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Audio Speech and Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TASL.2013.2273662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 50

Abstract

This paper deals with the interpolation of the Room Impulse Responses (RIRs) within a whole volume, from as few measurements as possible, and without the knowledge of the geometry of the room. We focus on the early reflections of the RIRs, that have the key property of being sparse in the time domain: this can be exploited in a framework of model-based Compressed Sensing. Starting from a set of RIRs randomly sampled in the spatial domain of interest by a 3D microphone array, we propose a modified Matching Pursuit algorithm to estimate the position of a small set of virtual sources. Then, the reconstruction of the RIRs at interpolated positions is performed using a projection onto a basis of monopoles, which correspond to the estimated virtual sources. An extension of the proposed algorithm allows the interpolation of the positions of both source and receiver, using the acquisition of four different source positions. This approach is validated both by numerical examples, and by experimental measurements using a 3D array with up to 120 microphones.
室内混响重建:使用压缩传感的早期部分插值
本文在不了解房间几何形状的情况下,通过尽可能少的测量,处理整个体积内房间脉冲响应(RIRs)的插值。我们专注于rir的早期反射,其在时域中具有稀疏的关键属性:这可以在基于模型的压缩感知框架中利用。从三维麦克风阵列在感兴趣的空间域中随机采样的一组rir开始,我们提出了一种改进的匹配追踪算法来估计一小组虚拟源的位置。然后,利用与估计的虚源相对应的单极子基上的投影来重建插值位置上的rir。该算法的扩展允许源和接收器的位置插值,使用四个不同的源位置的采集。该方法通过数值实例和使用多达120个麦克风的3D阵列的实验测量进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Audio Speech and Language Processing
IEEE Transactions on Audio Speech and Language Processing 工程技术-工程:电子与电气
自引率
0.00%
发文量
0
审稿时长
24.0 months
期刊介绍: The IEEE Transactions on Audio, Speech and Language Processing covers the sciences, technologies and applications relating to the analysis, coding, enhancement, recognition and synthesis of audio, music, speech and language. In particular, audio processing also covers auditory modeling, acoustic modeling and source separation. Speech processing also covers speech production and perception, adaptation, lexical modeling and speaker recognition. Language processing also covers spoken language understanding, translation, summarization, mining, general language modeling, as well as spoken dialog systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信