Maximizing Phoneme Recognition Accuracy for Enhanced Speech Intelligibility in Noise

Petko N. Petkov, G. Henter, W. Kleijn
{"title":"Maximizing Phoneme Recognition Accuracy for Enhanced Speech Intelligibility in Noise","authors":"Petko N. Petkov, G. Henter, W. Kleijn","doi":"10.1109/TASL.2013.2244089","DOIUrl":null,"url":null,"abstract":"An effective measure of speech intelligibility is the probability of correct recognition of the transmitted message. We propose a speech pre-enhancement method based on matching the recognized text to the text of the original message. The selected criterion is accurately approximated by the probability of the correct transcription given an estimate of the noisy speech features. In the presence of environment noise, and with a decrease in the signal-to-noise ratio, speech intelligibility declines. We implement a speech pre-enhancement system that optimizes the proposed criterion for the parameters of two distinct speech modification strategies under an energy-preservation constraint. The proposed method requires prior knowledge in the form of a transcription of the transmitted message and acoustic speech models from an automatic speech recognition system. Performance results from an open-set subjective intelligibility test indicate a significant improvement over natural speech and a reference system that optimizes a perceptual-distortion-based objective intelligibility measure. The computational complexity of the approach permits use in on-line applications.","PeriodicalId":55014,"journal":{"name":"IEEE Transactions on Audio Speech and Language Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TASL.2013.2244089","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Audio Speech and Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TASL.2013.2244089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

An effective measure of speech intelligibility is the probability of correct recognition of the transmitted message. We propose a speech pre-enhancement method based on matching the recognized text to the text of the original message. The selected criterion is accurately approximated by the probability of the correct transcription given an estimate of the noisy speech features. In the presence of environment noise, and with a decrease in the signal-to-noise ratio, speech intelligibility declines. We implement a speech pre-enhancement system that optimizes the proposed criterion for the parameters of two distinct speech modification strategies under an energy-preservation constraint. The proposed method requires prior knowledge in the form of a transcription of the transmitted message and acoustic speech models from an automatic speech recognition system. Performance results from an open-set subjective intelligibility test indicate a significant improvement over natural speech and a reference system that optimizes a perceptual-distortion-based objective intelligibility measure. The computational complexity of the approach permits use in on-line applications.
最大限度地提高音素识别精度,提高语音可理解性噪声
语音可理解性的有效度量是正确识别传输信息的概率。我们提出了一种基于识别文本与原始消息文本匹配的语音预增强方法。所选择的标准是通过给定噪声语音特征估计的正确转录的概率精确地近似。在环境噪声存在的情况下,随着信噪比的降低,语音的可理解度下降。我们实现了一个语音预增强系统,该系统在能量守恒约束下优化了两种不同语音修改策略参数的准则。所提出的方法需要以传输信息的转录形式的先验知识和来自自动语音识别系统的声学语音模型。开放集主观可理解性测试的性能结果表明,与自然语音和优化基于感知扭曲的客观可理解性测量的参考系统相比,有了显著的改进。该方法的计算复杂性允许在在线应用中使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Audio Speech and Language Processing
IEEE Transactions on Audio Speech and Language Processing 工程技术-工程:电子与电气
自引率
0.00%
发文量
0
审稿时长
24.0 months
期刊介绍: The IEEE Transactions on Audio, Speech and Language Processing covers the sciences, technologies and applications relating to the analysis, coding, enhancement, recognition and synthesis of audio, music, speech and language. In particular, audio processing also covers auditory modeling, acoustic modeling and source separation. Speech processing also covers speech production and perception, adaptation, lexical modeling and speaker recognition. Language processing also covers spoken language understanding, translation, summarization, mining, general language modeling, as well as spoken dialog systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信