Double-checking auditors: a Bayesian approach

V. M. Raats, J. J. A. Moors
{"title":"Double-checking auditors: a Bayesian approach","authors":"V. M. Raats,&nbsp;J. J. A. Moors","doi":"10.1111/1467-9884.00364","DOIUrl":null,"url":null,"abstract":"<p><b>Summary.</b> The paper discusses the problem of a fallible auditor who may classify incorrect values as ‘correct’, or vice versa. To detect these mistakes, a sample of the auditor's classifications is checked again, now by an infallible expert. From the classifications of both the auditor and the expert the error rate in the population is estimated. We show that classical confidence intervals for the error rate are of limited practical use. Instead, we propose and implement a Bayesian approach.</p>","PeriodicalId":100846,"journal":{"name":"Journal of the Royal Statistical Society: Series D (The Statistician)","volume":"52 3","pages":"351-365"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/1467-9884.00364","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Royal Statistical Society: Series D (The Statistician)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1467-9884.00364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

Summary. The paper discusses the problem of a fallible auditor who may classify incorrect values as ‘correct’, or vice versa. To detect these mistakes, a sample of the auditor's classifications is checked again, now by an infallible expert. From the classifications of both the auditor and the expert the error rate in the population is estimated. We show that classical confidence intervals for the error rate are of limited practical use. Instead, we propose and implement a Bayesian approach.

双重检查审计员:贝叶斯方法
总结。本文讨论了易犯错误的审计员可能将不正确的值分类为“正确的”或反之亦然的问题。为了发现这些错误,审计人员的分类样本再次被检查,现在由一位绝对可靠的专家检查。从审计人员和专家的分类中估计总体错误率。我们表明,误差率的经典置信区间在实际应用中是有限的。相反,我们提出并实现了贝叶斯方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信