{"title":"Statistical Relational Learning for Game Theory","authors":"Marco Lippi","doi":"10.1109/TCIAIG.2015.2490279","DOIUrl":null,"url":null,"abstract":"In this paper, we motivate the use of models and algorithms from the area of Statistical Relational Learning (SRL) as a framework for the description and the analysis of games. SRL combines the powerful formalism of first-order logic with the capability of probabilistic graphical models in handling uncertainty in data and representing dependencies between random variables: for this reason, SRL models can be effectively used to represent several categories of games, including games with partial information, graphical games and stochastic games. Inference algorithms can be used to approach the opponent modeling problem, as well as to find Nash equilibria or Pareto optimal solutions. Structure learning algorithms can be applied, in order to automatically extract probabilistic logic clauses describing the strategies of an opponent with a high-level, human-interpretable formalism. Experiments conducted using Markov logic networks, one of the most used SRL frameworks, show the potential of the approach.","PeriodicalId":49192,"journal":{"name":"IEEE Transactions on Computational Intelligence and AI in Games","volume":"8 1","pages":"412-425"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TCIAIG.2015.2490279","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Intelligence and AI in Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TCIAIG.2015.2490279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 3
Abstract
In this paper, we motivate the use of models and algorithms from the area of Statistical Relational Learning (SRL) as a framework for the description and the analysis of games. SRL combines the powerful formalism of first-order logic with the capability of probabilistic graphical models in handling uncertainty in data and representing dependencies between random variables: for this reason, SRL models can be effectively used to represent several categories of games, including games with partial information, graphical games and stochastic games. Inference algorithms can be used to approach the opponent modeling problem, as well as to find Nash equilibria or Pareto optimal solutions. Structure learning algorithms can be applied, in order to automatically extract probabilistic logic clauses describing the strategies of an opponent with a high-level, human-interpretable formalism. Experiments conducted using Markov logic networks, one of the most used SRL frameworks, show the potential of the approach.
期刊介绍:
Cessation. The IEEE Transactions on Computational Intelligence and AI in Games (T-CIAIG) publishes archival journal quality original papers in computational intelligence and related areas in artificial intelligence applied to games, including but not limited to videogames, mathematical games, human–computer interactions in games, and games involving physical objects. Emphasis is placed on the use of these methods to improve performance in and understanding of the dynamics of games, as well as gaining insight into the properties of the methods as applied to games. It also includes using games as a platform for building intelligent embedded agents for the real world. Papers connecting games to all areas of computational intelligence and traditional AI are considered.