Shi-Jim Yen, Cheng-Wei Chou, Jr-Chang Chen, I-Chen Wu, Kuo-Yuan Kao
{"title":"Design and Implementation of Chinese Dark Chess Programs","authors":"Shi-Jim Yen, Cheng-Wei Chou, Jr-Chang Chen, I-Chen Wu, Kuo-Yuan Kao","doi":"10.1109/TCIAIG.2014.2329034","DOIUrl":null,"url":null,"abstract":"Chinese Dark Chess is an old and very popular game in the Chinese culture sphere. This game is a stochastic game with symmetric hidden information. This paper reviews alpha-beta search with chance nodes and proposes heuristics on Chinese Dark Chess programs. We propose an application of nondeterministic Monte Carlo Tree Search with random nodes for tackling partial observation. The proposed methods were implemented in the program Diablo, which won four Chinese Dark Chess tournaments in TAAI 2011/2012, TCGA 2011/2012 computer game tournaments. Diablo also played hundreds of games with different human players and programs based on alpha-beta search. These results show that the nondeterministic MCTS equipped with our heuristics is promising for Chinese Dark Chess.","PeriodicalId":49192,"journal":{"name":"IEEE Transactions on Computational Intelligence and AI in Games","volume":"7 1","pages":"66-74"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TCIAIG.2014.2329034","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computational Intelligence and AI in Games","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TCIAIG.2014.2329034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 17
Abstract
Chinese Dark Chess is an old and very popular game in the Chinese culture sphere. This game is a stochastic game with symmetric hidden information. This paper reviews alpha-beta search with chance nodes and proposes heuristics on Chinese Dark Chess programs. We propose an application of nondeterministic Monte Carlo Tree Search with random nodes for tackling partial observation. The proposed methods were implemented in the program Diablo, which won four Chinese Dark Chess tournaments in TAAI 2011/2012, TCGA 2011/2012 computer game tournaments. Diablo also played hundreds of games with different human players and programs based on alpha-beta search. These results show that the nondeterministic MCTS equipped with our heuristics is promising for Chinese Dark Chess.
期刊介绍:
Cessation. The IEEE Transactions on Computational Intelligence and AI in Games (T-CIAIG) publishes archival journal quality original papers in computational intelligence and related areas in artificial intelligence applied to games, including but not limited to videogames, mathematical games, human–computer interactions in games, and games involving physical objects. Emphasis is placed on the use of these methods to improve performance in and understanding of the dynamics of games, as well as gaining insight into the properties of the methods as applied to games. It also includes using games as a platform for building intelligent embedded agents for the real world. Papers connecting games to all areas of computational intelligence and traditional AI are considered.