A Robust Infrared and Visible Image Registration Method for Dual-Sensor UAV System

IF 8.6 1区 地球科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yan Mo;Xudong Kang;Shuo Zhang;Puhong Duan;Shutao Li
{"title":"A Robust Infrared and Visible Image Registration Method for Dual-Sensor UAV System","authors":"Yan Mo;Xudong Kang;Shuo Zhang;Puhong Duan;Shutao Li","doi":"10.1109/TGRS.2023.3306558","DOIUrl":null,"url":null,"abstract":"Single-modal image registration methods are generally not feasible for visible and infrared images. Besides, multimodal image registration methods still suffer from uneven distribution of extracted features, low repeatability, and ambiguous features. To address these issues, a coarse-to-fine infrared and visible image registration approach for a dual-sensor unmanned aerial vehicle (UAV) imaging system is proposed, which is resilient to the difference in focal lengths and field of view. First, in the coarse registration step, the infrared image is transformed to the same scale as the visible image by using the similarity transformation. This operation makes the proposed method robust to the variation of the field of view. Then, the feature point pairs are initialized using feature detectors in the infrared image’s blocked phase congruency feature map. Next, the feature point pairs are optimized by estimating the offset based on the relationship between the constructed feature descriptors. Finally, using elastic deformation, the pixel-level registered infrared image is obtained. Extensive experiments demonstrate the superior performance of the proposed coarse-to-fine image registration methodology in real infrared-visible image pairs. The code and dataset are available at \n<uri>https://drive.google.com/drive/folders/1mpUWwHUbKTrBdOrNMNRRnuJclDUAC7nU?usp=sharing</uri>\n.","PeriodicalId":13213,"journal":{"name":"IEEE Transactions on Geoscience and Remote Sensing","volume":"61 ","pages":"1-13"},"PeriodicalIF":8.6000,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Geoscience and Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10224302/","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Single-modal image registration methods are generally not feasible for visible and infrared images. Besides, multimodal image registration methods still suffer from uneven distribution of extracted features, low repeatability, and ambiguous features. To address these issues, a coarse-to-fine infrared and visible image registration approach for a dual-sensor unmanned aerial vehicle (UAV) imaging system is proposed, which is resilient to the difference in focal lengths and field of view. First, in the coarse registration step, the infrared image is transformed to the same scale as the visible image by using the similarity transformation. This operation makes the proposed method robust to the variation of the field of view. Then, the feature point pairs are initialized using feature detectors in the infrared image’s blocked phase congruency feature map. Next, the feature point pairs are optimized by estimating the offset based on the relationship between the constructed feature descriptors. Finally, using elastic deformation, the pixel-level registered infrared image is obtained. Extensive experiments demonstrate the superior performance of the proposed coarse-to-fine image registration methodology in real infrared-visible image pairs. The code and dataset are available at https://drive.google.com/drive/folders/1mpUWwHUbKTrBdOrNMNRRnuJclDUAC7nU?usp=sharing .
一种用于双传感器无人机系统的鲁棒红外和可见光图像配准方法
对于可见光和红外图像,单模态图像配准方法通常是不可行的。此外,多模式图像配准方法仍然存在提取特征分布不均匀、重复性低和特征模糊的问题。为了解决这些问题,提出了一种用于双传感器无人机成像系统的从粗到细红外和可见光图像配准方法,该方法对焦距和视场的差异具有弹性。首先,在粗配准步骤中,通过使用相似性变换将红外图像变换到与可见图像相同的尺度。这种操作使得所提出的方法对视场的变化具有鲁棒性。然后,使用红外图像的分块相位一致性特征图中的特征检测器来初始化特征点对。接下来,通过基于构造的特征描述符之间的关系估计偏移来优化特征点对。最后,利用弹性变形,得到了像素级配准的红外图像。大量实验证明了所提出的粗到细图像配准方法在真实红外-可见光图像对中的优越性能。代码和数据集可在https://drive.google.com/drive/folders/1mpUWwHUbKTrBdOrNMNRRnuJclDUAC7nU?usp=sharing.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Geoscience and Remote Sensing
IEEE Transactions on Geoscience and Remote Sensing 工程技术-地球化学与地球物理
CiteScore
11.50
自引率
28.00%
发文量
1912
审稿时长
4.0 months
期刊介绍: IEEE Transactions on Geoscience and Remote Sensing (TGRS) is a monthly publication that focuses on the theory, concepts, and techniques of science and engineering as applied to sensing the land, oceans, atmosphere, and space; and the processing, interpretation, and dissemination of this information.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信