Yi Kong, Xuesong Wang, Yuhu Cheng, Yangchi Chen, C. L. P. Chen
{"title":"Graph Domain Adversarial Network With Dual-Weighted Pseudo-Label Loss for Hyperspectral Image Classification","authors":"Yi Kong, Xuesong Wang, Yuhu Cheng, Yangchi Chen, C. L. P. Chen","doi":"10.1109/lgrs.2021.3135310","DOIUrl":null,"url":null,"abstract":"A hyperspectral image (HSI) classification method named graph domain adversarial network with dual-weighted pseudo-label loss (GDAN-DWPL) is proposed in this letter. First, in order to extract more discriminative features, GDAN is applied to the transfer task of HSI. Then, a more reliable spectral–spatial graph is constructed by comprehensively utilizing the abundant spectral features and spatial contextual information. Finally, due to the misalignment of probability distribution on class-level caused by inaccurate pseudo-labels of target domain, a dual-weighted pseudo-label loss is proposed from the perspective of spatiality and confidence. By assigning larger weights to more reliable pixels and eliminating pixels with false pseudo-labels, the negative impact on learning process of prediction model can be reduced. Experimental results on four real HSI datasets show the superiority of GDAN-DWPL.","PeriodicalId":13046,"journal":{"name":"IEEE Geoscience and Remote Sensing Letters","volume":"19 1","pages":"1-5"},"PeriodicalIF":4.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Geoscience and Remote Sensing Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/lgrs.2021.3135310","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 5
Abstract
A hyperspectral image (HSI) classification method named graph domain adversarial network with dual-weighted pseudo-label loss (GDAN-DWPL) is proposed in this letter. First, in order to extract more discriminative features, GDAN is applied to the transfer task of HSI. Then, a more reliable spectral–spatial graph is constructed by comprehensively utilizing the abundant spectral features and spatial contextual information. Finally, due to the misalignment of probability distribution on class-level caused by inaccurate pseudo-labels of target domain, a dual-weighted pseudo-label loss is proposed from the perspective of spatiality and confidence. By assigning larger weights to more reliable pixels and eliminating pixels with false pseudo-labels, the negative impact on learning process of prediction model can be reduced. Experimental results on four real HSI datasets show the superiority of GDAN-DWPL.
期刊介绍:
IEEE Geoscience and Remote Sensing Letters (GRSL) is a monthly publication for short papers (maximum length 5 pages) addressing new ideas and formative concepts in remote sensing as well as important new and timely results and concepts. Papers should relate to the theory, concepts and techniques of science and engineering as applied to sensing the earth, oceans, atmosphere, and space, and the processing, interpretation, and dissemination of this information. The technical content of papers must be both new and significant. Experimental data must be complete and include sufficient description of experimental apparatus, methods, and relevant experimental conditions. GRSL encourages the incorporation of "extended objects" or "multimedia" such as animations to enhance the shorter papers.