Naihao Liu, Jing-Hua Gao, Bo Zhang, Fangyu Li, Qian Wang
{"title":"Time–Frequency Analysis of Seismic Data Using a Three Parameters S Transform","authors":"Naihao Liu, Jing-Hua Gao, Bo Zhang, Fangyu Li, Qian Wang","doi":"10.1109/LGRS.2017.2778045","DOIUrl":null,"url":null,"abstract":"The S transform (ST) is one of the most commonly used time–frequency (TF) analysis algorithms and is commonly used in assisting reservoir characterization and hydrocarbon detection. Unfortunately, the TF spectrum obtained by the ST has a low temporal resolution at low frequencies, which lowers its ability in thin beds and channels detection. In this letter, we propose a three parameters ST (TPST) to optimize the TF resolution flexibly. To demonstrate the validity and effectiveness of the TPST, we first apply it to a synthetic data and a synthetic seismic trace and then to a filed data. Synthetic data examples show that this TPST achieves an optimized TF resolution, compared with the standard ST and modified ST with two parameters. Field data experiments illustrate that the TPST is superior to the ST in highlighting the channel edges. The lateral continuity of the frequency slice produced by the TPST is more continuous than that of the ST.","PeriodicalId":13046,"journal":{"name":"IEEE Geoscience and Remote Sensing Letters","volume":"15 1","pages":"142-146"},"PeriodicalIF":4.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/LGRS.2017.2778045","citationCount":"62","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Geoscience and Remote Sensing Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/LGRS.2017.2778045","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 62
Abstract
The S transform (ST) is one of the most commonly used time–frequency (TF) analysis algorithms and is commonly used in assisting reservoir characterization and hydrocarbon detection. Unfortunately, the TF spectrum obtained by the ST has a low temporal resolution at low frequencies, which lowers its ability in thin beds and channels detection. In this letter, we propose a three parameters ST (TPST) to optimize the TF resolution flexibly. To demonstrate the validity and effectiveness of the TPST, we first apply it to a synthetic data and a synthetic seismic trace and then to a filed data. Synthetic data examples show that this TPST achieves an optimized TF resolution, compared with the standard ST and modified ST with two parameters. Field data experiments illustrate that the TPST is superior to the ST in highlighting the channel edges. The lateral continuity of the frequency slice produced by the TPST is more continuous than that of the ST.
期刊介绍:
IEEE Geoscience and Remote Sensing Letters (GRSL) is a monthly publication for short papers (maximum length 5 pages) addressing new ideas and formative concepts in remote sensing as well as important new and timely results and concepts. Papers should relate to the theory, concepts and techniques of science and engineering as applied to sensing the earth, oceans, atmosphere, and space, and the processing, interpretation, and dissemination of this information. The technical content of papers must be both new and significant. Experimental data must be complete and include sufficient description of experimental apparatus, methods, and relevant experimental conditions. GRSL encourages the incorporation of "extended objects" or "multimedia" such as animations to enhance the shorter papers.