{"title":"Inversion-Driven Attenuation Compensation Using Synchrosqueezing Transform","authors":"Guowei Zhang, Jinghuai Gao","doi":"10.1109/LGRS.2017.2777598","DOIUrl":null,"url":null,"abstract":"Attenuation is a fundamental mechanism as seismic wave propagates through the earth. The loss of high-frequency energy and concomitant phase distortion can be compensated by inverse <inline-formula> <tex-math notation=\"LaTeX\">${Q}$ </tex-math></inline-formula> filtering to enhance the resolution of seismic data. Since the attenuation process depends on time and frequency, it is routinely performed in the time–frequency domain. The synchrosqueezing transform (SST), which provides highly localized time–frequency representations for the nonstationary signals due to reduced spectral smearing, is applied to implement the inverse <inline-formula> <tex-math notation=\"LaTeX\">${Q}$ </tex-math></inline-formula> filtering scheme. However, the amplitude compensation process is unstable because energy amplification is involved. To stabilize it, the amplitude compensation is regarded as an inverse problem with an L1-norm regularization term in the SST domain. The iteratively reweighted least-squares algorithm is used to solve the regularized inverse problem. Synthetic and real data examples illustrate the stability and effectiveness of the proposed method.","PeriodicalId":13046,"journal":{"name":"IEEE Geoscience and Remote Sensing Letters","volume":"15 1","pages":"132-136"},"PeriodicalIF":4.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/LGRS.2017.2777598","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Geoscience and Remote Sensing Letters","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1109/LGRS.2017.2777598","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 15
Abstract
Attenuation is a fundamental mechanism as seismic wave propagates through the earth. The loss of high-frequency energy and concomitant phase distortion can be compensated by inverse ${Q}$ filtering to enhance the resolution of seismic data. Since the attenuation process depends on time and frequency, it is routinely performed in the time–frequency domain. The synchrosqueezing transform (SST), which provides highly localized time–frequency representations for the nonstationary signals due to reduced spectral smearing, is applied to implement the inverse ${Q}$ filtering scheme. However, the amplitude compensation process is unstable because energy amplification is involved. To stabilize it, the amplitude compensation is regarded as an inverse problem with an L1-norm regularization term in the SST domain. The iteratively reweighted least-squares algorithm is used to solve the regularized inverse problem. Synthetic and real data examples illustrate the stability and effectiveness of the proposed method.
期刊介绍:
IEEE Geoscience and Remote Sensing Letters (GRSL) is a monthly publication for short papers (maximum length 5 pages) addressing new ideas and formative concepts in remote sensing as well as important new and timely results and concepts. Papers should relate to the theory, concepts and techniques of science and engineering as applied to sensing the earth, oceans, atmosphere, and space, and the processing, interpretation, and dissemination of this information. The technical content of papers must be both new and significant. Experimental data must be complete and include sufficient description of experimental apparatus, methods, and relevant experimental conditions. GRSL encourages the incorporation of "extended objects" or "multimedia" such as animations to enhance the shorter papers.