OFIDS : Online Learning-Enabled and Fingerprint-Based Intrusion Detection System in Controller Area Networks

IF 7 2区 计算机科学 Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Y. Wei, Can Cheng, Guoqi Xie
{"title":"OFIDS : Online Learning-Enabled and Fingerprint-Based Intrusion Detection System in Controller Area Networks","authors":"Y. Wei, Can Cheng, Guoqi Xie","doi":"10.1109/tdsc.2022.3230501","DOIUrl":null,"url":null,"abstract":"As a widely used industrial field bus, the controller area network (CAN) lacks security mechanisms (e.g., encryption and authentication) and is vulnerable to security attacks (e.g., masquerade). A fingerprint-based intrusion detection system (IDS) in CAN networks can detect masquerade attacks by scanning the unique clock signals of CAN devices. However, most state-of-the-art fingerprint-based IDSs commonly use an analog-to-digital converter module with a low frequency of 60 MHz to sample CAN signals, lowering the detection accuracy of fingerprint-based IDSs. In addition, almost all fingerprint-based IDSs are trained offline and then detected online, ignoring that system clock signals of hardware change over time, resulting in degraded detection performance. This paper proposes an online learning-enabled and fingerprint-based IDS (OFIDS) in CAN networks to increase the sampling frequency, shorten the detection response time, and increase the detection accuracy. OFIDS uses a high-speed comparator (i.e., TLV3501) and FPGA (i.e., Xilinx ZYNQ-7010) to sample the CAN_High signal, achieving a low sampling delay time of 4.5 ns and a high sampling frequency of 1 GHz. The self-adaptability of the backpropagation neural network is taken advantage of and used to train the OFIDS model with a detection accuracy of 99.9992%. OFIDS is deployed to a CAN network prototype with five CAN devices (i.e., two Arduino UNO boards and three STM32 microcontrollers) and a real vehicle. Experimental results show that OFIDS can achieve at least 99.99% detection accuracy within 0.18μs in a CAN network prototype and can achieve 98% detection accuracy in a real vehicle.","PeriodicalId":13047,"journal":{"name":"IEEE Transactions on Dependable and Secure Computing","volume":"1 1","pages":"4607-4620"},"PeriodicalIF":7.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dependable and Secure Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/tdsc.2022.3230501","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 3

Abstract

As a widely used industrial field bus, the controller area network (CAN) lacks security mechanisms (e.g., encryption and authentication) and is vulnerable to security attacks (e.g., masquerade). A fingerprint-based intrusion detection system (IDS) in CAN networks can detect masquerade attacks by scanning the unique clock signals of CAN devices. However, most state-of-the-art fingerprint-based IDSs commonly use an analog-to-digital converter module with a low frequency of 60 MHz to sample CAN signals, lowering the detection accuracy of fingerprint-based IDSs. In addition, almost all fingerprint-based IDSs are trained offline and then detected online, ignoring that system clock signals of hardware change over time, resulting in degraded detection performance. This paper proposes an online learning-enabled and fingerprint-based IDS (OFIDS) in CAN networks to increase the sampling frequency, shorten the detection response time, and increase the detection accuracy. OFIDS uses a high-speed comparator (i.e., TLV3501) and FPGA (i.e., Xilinx ZYNQ-7010) to sample the CAN_High signal, achieving a low sampling delay time of 4.5 ns and a high sampling frequency of 1 GHz. The self-adaptability of the backpropagation neural network is taken advantage of and used to train the OFIDS model with a detection accuracy of 99.9992%. OFIDS is deployed to a CAN network prototype with five CAN devices (i.e., two Arduino UNO boards and three STM32 microcontrollers) and a real vehicle. Experimental results show that OFIDS can achieve at least 99.99% detection accuracy within 0.18μs in a CAN network prototype and can achieve 98% detection accuracy in a real vehicle.
控制器局域网中基于指纹的在线学习入侵检测系统
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Transactions on Dependable and Secure Computing
IEEE Transactions on Dependable and Secure Computing 工程技术-计算机:软件工程
CiteScore
11.20
自引率
5.50%
发文量
354
审稿时长
9 months
期刊介绍: The "IEEE Transactions on Dependable and Secure Computing (TDSC)" is a prestigious journal that publishes high-quality, peer-reviewed research in the field of computer science, specifically targeting the development of dependable and secure computing systems and networks. This journal is dedicated to exploring the fundamental principles, methodologies, and mechanisms that enable the design, modeling, and evaluation of systems that meet the required levels of reliability, security, and performance. The scope of TDSC includes research on measurement, modeling, and simulation techniques that contribute to the understanding and improvement of system performance under various constraints. It also covers the foundations necessary for the joint evaluation, verification, and design of systems that balance performance, security, and dependability. By publishing archival research results, TDSC aims to provide a valuable resource for researchers, engineers, and practitioners working in the areas of cybersecurity, fault tolerance, and system reliability. The journal's focus on cutting-edge research ensures that it remains at the forefront of advancements in the field, promoting the development of technologies that are critical for the functioning of modern, complex systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信