A. Loraine, G. Helt, M. Cline, Michael A. Siani-Rose
{"title":"Protein-based analysis of alternative splicing in the human genome","authors":"A. Loraine, G. Helt, M. Cline, Michael A. Siani-Rose","doi":"10.1109/CSB.2002.1039335","DOIUrl":null,"url":null,"abstract":"Understanding the functional significance of alternative splicing and other mechanisms that generate RNA transcript diversity is an important challenge facing modern-day molecular biology. Using homology-based, protein sequence analysis methods, it should be possible to investigate how transcript diversity impacts protein structure and function. To test this, a data mining technique (\"DiffHit\") was developed to identify and catalog genes producing protein isoforms which exhibit distinct profiles of conserved protein motifs. We found that out of a test set of over 1,300 alternatively spliced genes with solved genomic structure, over 30% exhibited a differential profile of conserved InterPro and/or Blocks protein motifs across distinct isoforms. These results suggest that motif databases such as Blocks and InterPro are potentially useful tools for investigating how alternative transcript structure affects gene function.","PeriodicalId":87204,"journal":{"name":"Proceedings. IEEE Computer Society Bioinformatics Conference","volume":"1 1","pages":"118-124"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/CSB.2002.1039335","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Computer Society Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSB.2002.1039335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Understanding the functional significance of alternative splicing and other mechanisms that generate RNA transcript diversity is an important challenge facing modern-day molecular biology. Using homology-based, protein sequence analysis methods, it should be possible to investigate how transcript diversity impacts protein structure and function. To test this, a data mining technique ("DiffHit") was developed to identify and catalog genes producing protein isoforms which exhibit distinct profiles of conserved protein motifs. We found that out of a test set of over 1,300 alternatively spliced genes with solved genomic structure, over 30% exhibited a differential profile of conserved InterPro and/or Blocks protein motifs across distinct isoforms. These results suggest that motif databases such as Blocks and InterPro are potentially useful tools for investigating how alternative transcript structure affects gene function.