P-quasi complete linkage analysis for gene-expression data

S. Seno, R. Teramoto, H. Matsuda
{"title":"P-quasi complete linkage analysis for gene-expression data","authors":"S. Seno, R. Teramoto, H. Matsuda","doi":"10.1109/CSB.2002.1039365","DOIUrl":null,"url":null,"abstract":"In order to find the function of genes from gene-expression profiles, hierarchical clustering has generally been used, but this method has problems, for example a dendrogram tends to change by data dependence, therefore it is easy to be influenced of the error of an experimental noise. To cope with problems, we propose another type of clustering. We formulate the problem of clustering as a graph-covering problem by connected subgraphs where vertices and edges of the graph denote genes and similarities between genes, respectively. The method is based on the p-quasi complete linkage algorithm for describing clusters. We present the outline of an algorithm for clustering a set of genes into subsets corresponding to p-quasi complete linkage graphs.","PeriodicalId":87204,"journal":{"name":"Proceedings. IEEE Computer Society Bioinformatics Conference","volume":"1 1","pages":"342-"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/CSB.2002.1039365","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Computer Society Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSB.2002.1039365","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In order to find the function of genes from gene-expression profiles, hierarchical clustering has generally been used, but this method has problems, for example a dendrogram tends to change by data dependence, therefore it is easy to be influenced of the error of an experimental noise. To cope with problems, we propose another type of clustering. We formulate the problem of clustering as a graph-covering problem by connected subgraphs where vertices and edges of the graph denote genes and similarities between genes, respectively. The method is based on the p-quasi complete linkage algorithm for describing clusters. We present the outline of an algorithm for clustering a set of genes into subsets corresponding to p-quasi complete linkage graphs.
基因表达数据的p -准完全连锁分析
为了从基因表达谱中寻找基因的功能,一般采用分层聚类的方法,但这种方法存在一些问题,例如树图容易因数据依赖而发生变化,因此容易受到实验噪声误差的影响。为了解决这些问题,我们提出了另一种类型的聚类。我们将聚类问题表述为连接子图的图覆盖问题,其中图的顶点和边分别表示基因和基因之间的相似性。该方法基于描述聚类的p-拟完全联动算法。我们提出了一种将一组基因聚类成对应于p-拟完全链接图的子集的算法大纲。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信