A maximum entropy algorithm for rhythmic analysis of genome-wide expression patterns

C. Langmead, C. Robertson, Mcclung Bruce, Randall Donald
{"title":"A maximum entropy algorithm for rhythmic analysis of genome-wide expression patterns","authors":"C. Langmead, C. Robertson, Mcclung Bruce, Randall Donald","doi":"10.1109/CSB.2002.1039346","DOIUrl":null,"url":null,"abstract":"We introduce a maximum entropy-based analysis technique for extracting and characterizing rhythmic expression profiles from DNA microarray hybridization data. These patterns are clues to discovering genes implicated in cell-cycle, circadian, and other periodic biological processes. The algorithm, implemented in a program called ENRAGE (Entropy-based Rhythmic Analysis of Gene Expression), treats the task of estimating an expression profile's periodicity and phase as a simultaneous bicriterion optimization problem. Specifically, a frequency domain spectrum is reconstructed from a time-series of gene expression data, subject to two constraints: (a) the likelihood of the spectrum and (b) the Shannon entropy of the reconstructed spectrum. Unlike Fourier-based spectral analysis, maximum entropy spectral reconstruction is well suited to signals of the type generated in DNA microarray experiments. Our algorithm is optimal, running in linear time in the number of expression profiles. Moreover an implementation of our algorithm runs an order of magnitude faster than previous methods. Finally, we demonstrate that ENRAGE is superior to other methods at identifying and characterizing periodic expression profiles on both synthetic and actual DNA microarray hybridization data.","PeriodicalId":87204,"journal":{"name":"Proceedings. IEEE Computer Society Bioinformatics Conference","volume":"1 1","pages":"237-245"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/CSB.2002.1039346","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Computer Society Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSB.2002.1039346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

We introduce a maximum entropy-based analysis technique for extracting and characterizing rhythmic expression profiles from DNA microarray hybridization data. These patterns are clues to discovering genes implicated in cell-cycle, circadian, and other periodic biological processes. The algorithm, implemented in a program called ENRAGE (Entropy-based Rhythmic Analysis of Gene Expression), treats the task of estimating an expression profile's periodicity and phase as a simultaneous bicriterion optimization problem. Specifically, a frequency domain spectrum is reconstructed from a time-series of gene expression data, subject to two constraints: (a) the likelihood of the spectrum and (b) the Shannon entropy of the reconstructed spectrum. Unlike Fourier-based spectral analysis, maximum entropy spectral reconstruction is well suited to signals of the type generated in DNA microarray experiments. Our algorithm is optimal, running in linear time in the number of expression profiles. Moreover an implementation of our algorithm runs an order of magnitude faster than previous methods. Finally, we demonstrate that ENRAGE is superior to other methods at identifying and characterizing periodic expression profiles on both synthetic and actual DNA microarray hybridization data.
全基因组表达模式节律性分析的最大熵算法
我们介绍了一种基于最大熵的分析技术,用于从DNA微阵列杂交数据中提取和表征节律表达谱。这些模式是发现与细胞周期、昼夜节律和其他周期性生物过程有关的基因的线索。该算法在一个名为ENRAGE(基于熵的基因表达节奏分析)的程序中实现,将估计表达谱的周期性和相位的任务视为一个同步的双周期优化问题。具体来说,从基因表达数据的时间序列重构频域谱,受两个约束:(a)谱的似然性和(b)重构谱的香农熵。与基于傅立叶的光谱分析不同,最大熵光谱重建非常适合于DNA微阵列实验中产生的信号类型。我们的算法是最优的,在线性时间内运行的表达式配置文件的数量。此外,我们的算法的实现比以前的方法运行速度快了一个数量级。最后,我们证明了ENRAGE在识别和表征合成和实际DNA微阵列杂交数据的周期性表达谱方面优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信