Bayesian network and nonparametric heteroscedastic regression for nonlinear modeling of genetic network.

S. Imoto, SunYong Kim, Takao Goto, S. Aburatani, Kousuke Tashiro, S. Kuhara, S. Miyano
{"title":"Bayesian network and nonparametric heteroscedastic regression for nonlinear modeling of genetic network.","authors":"S. Imoto, SunYong Kim, Takao Goto, S. Aburatani, Kousuke Tashiro, S. Kuhara, S. Miyano","doi":"10.1109/CSB.2002.1039344","DOIUrl":null,"url":null,"abstract":"We propose a new statistical method for constructing genetic network from microarray gene expression data by using a Bayesian network. An essential point of Bayesian network construction is in the estimation of the conditional distribution of each random variable. We consider fitting nonparametric regression models with heterogeneous error variances to the microarray gene expression data to capture the nonlinear structures between genes. A problem still remains to be solved in selecting an optimal graph, which gives the best representation of the system among genes. We theoretically derive a new graph selection criterion from Bayes approach in general situations. The proposed method includes previous methods based on Bayesian networks. We demonstrate the effectiveness of the proposed method through the analysis of Saccharomyces cerevisiae gene expression data newly obtained by disrupting 100 genes.","PeriodicalId":87204,"journal":{"name":"Proceedings. IEEE Computer Society Bioinformatics Conference","volume":"1 1","pages":"219-27"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/CSB.2002.1039344","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Computer Society Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSB.2002.1039344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

We propose a new statistical method for constructing genetic network from microarray gene expression data by using a Bayesian network. An essential point of Bayesian network construction is in the estimation of the conditional distribution of each random variable. We consider fitting nonparametric regression models with heterogeneous error variances to the microarray gene expression data to capture the nonlinear structures between genes. A problem still remains to be solved in selecting an optimal graph, which gives the best representation of the system among genes. We theoretically derive a new graph selection criterion from Bayes approach in general situations. The proposed method includes previous methods based on Bayesian networks. We demonstrate the effectiveness of the proposed method through the analysis of Saccharomyces cerevisiae gene expression data newly obtained by disrupting 100 genes.
遗传网络非线性建模的贝叶斯网络与非参数异方差回归。
本文提出了一种利用贝叶斯网络从微阵列基因表达数据构建遗传网络的统计方法。贝叶斯网络构造的一个要点是对每个随机变量的条件分布进行估计。我们考虑拟合具有异质误差方差的非参数回归模型到微阵列基因表达数据,以捕获基因之间的非线性结构。如何选择最优图,使系统在基因中得到最好的表示,仍然是一个有待解决的问题。在一般情况下,我们从理论上推导出一种新的贝叶斯图选择准则。该方法包含了以往基于贝叶斯网络的方法。我们通过对100个新获得的酿酒酵母基因表达数据进行分析,证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信