Prediction of protein function using protein-protein interaction data.

Minghua Deng, Kui Zhang, Shipra Mehta, Ting Chen, Fengzhu Sun
{"title":"Prediction of protein function using protein-protein interaction data.","authors":"Minghua Deng, Kui Zhang, Shipra Mehta, Ting Chen, Fengzhu Sun","doi":"10.1109/csb.2002.1039342","DOIUrl":null,"url":null,"abstract":"Assigning functions to novel proteins is one of the most important problems in the postgenomic era. Several approaches have been applied to this problem, including the analysis of gene expression patterns, phylogenetic profiles, protein fusions, and protein-protein interactions. In this paper, we develop a novel approach that employs the theory of Markov random fields to infer a protein's functions using protein-protein interaction data and the functional annotations of protein's interaction partners. For each function of interest and protein, we predict the probability that the protein has such function using Bayesian approaches. Unlike other available approaches for protein annotation in which a protein has or does not have a function of interest, we give a probability for having the function. This probability indicates how confident we are about the prediction. We employ our method to predict protein functions based on \"biochemical function,\" \"subcellular location,\" and \"cellular role\" for yeast proteins defined in the Yeast Proteome Database (YPD, www.incyte.com), using the protein-protein interaction data from the Munich Information Center for Protein Sequences (MIPS, mips.gsf.de). We show that our approach outperforms other available methods for function prediction based on protein interaction data. The supplementary data is available at www-hto.usc.edu/~msms/ProteinFunction.","PeriodicalId":87204,"journal":{"name":"Proceedings. IEEE Computer Society Bioinformatics Conference","volume":"10 6 1","pages":"947-60"},"PeriodicalIF":0.0000,"publicationDate":"2003-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/csb.2002.1039342","citationCount":"47","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Computer Society Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/csb.2002.1039342","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

Abstract

Assigning functions to novel proteins is one of the most important problems in the postgenomic era. Several approaches have been applied to this problem, including the analysis of gene expression patterns, phylogenetic profiles, protein fusions, and protein-protein interactions. In this paper, we develop a novel approach that employs the theory of Markov random fields to infer a protein's functions using protein-protein interaction data and the functional annotations of protein's interaction partners. For each function of interest and protein, we predict the probability that the protein has such function using Bayesian approaches. Unlike other available approaches for protein annotation in which a protein has or does not have a function of interest, we give a probability for having the function. This probability indicates how confident we are about the prediction. We employ our method to predict protein functions based on "biochemical function," "subcellular location," and "cellular role" for yeast proteins defined in the Yeast Proteome Database (YPD, www.incyte.com), using the protein-protein interaction data from the Munich Information Center for Protein Sequences (MIPS, mips.gsf.de). We show that our approach outperforms other available methods for function prediction based on protein interaction data. The supplementary data is available at www-hto.usc.edu/~msms/ProteinFunction.
利用蛋白质-蛋白质相互作用数据预测蛋白质功能。
为新蛋白质分配功能是后基因组时代最重要的问题之一。有几种方法被应用于这个问题,包括基因表达模式、系统发育谱、蛋白质融合和蛋白质-蛋白质相互作用的分析。在本文中,我们开发了一种新的方法,利用蛋白质-蛋白质相互作用数据和蛋白质相互作用伙伴的功能注释,利用马尔可夫随机场理论来推断蛋白质的功能。对于每个感兴趣的功能和蛋白质,我们使用贝叶斯方法预测蛋白质具有此类功能的概率。与其他可用的蛋白质注释方法不同,其中蛋白质具有或不具有感兴趣的函数,我们给出了具有该函数的概率。这个概率表明我们对预测有多大的信心。我们利用来自慕尼黑蛋白质序列信息中心(MIPS, MIPS .gsf.de)的蛋白质-蛋白质相互作用数据,基于酵母蛋白质组数据库(YPD, www.incyte.com)中定义的酵母蛋白质的“生化功能”、“亚细胞定位”和“细胞作用”来预测蛋白质功能。我们表明,我们的方法优于其他基于蛋白质相互作用数据的功能预测方法。补充数据可从www-hto.usc.edu/~msms/ProteinFunction获取。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信