{"title":"Exploring LOD through metadata extraction and data-driven visualizations","authors":"Oscar Peña, Unai Aguilera, D. López-de-Ipiña","doi":"10.1108/PROG-12-2015-0079","DOIUrl":null,"url":null,"abstract":"Purpose – The purpose of this paper is to present a new approach toward automatically visualizing Linked Open Data (LOD) through metadata analysis. Design/methodology/approach – By focussing on the data within a LOD dataset, the authors can infer its structure in a much better way than current approaches, generating more intuitive models to progress toward visual representations. Findings – With no technical knowledge required, focussing on metadata properties from a semantically annotated dataset could lead to automatically generated charts that allow to understand the dataset in an exploratory manner. Through interactive visualizations, users can navigate LOD sources using a natural approach, in order to save time and resources when dealing with an unknown resource for the first time. Research limitations/implications – This approach is suitable for available SPARQL endpoints and could be extended for resource description framework dumps loaded locally. Originality/value – Most works dealing with LOD vi...","PeriodicalId":49663,"journal":{"name":"Program-Electronic Library and Information Systems","volume":"50 1","pages":"270-287"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1108/PROG-12-2015-0079","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Program-Electronic Library and Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/PROG-12-2015-0079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 8
Abstract
Purpose – The purpose of this paper is to present a new approach toward automatically visualizing Linked Open Data (LOD) through metadata analysis. Design/methodology/approach – By focussing on the data within a LOD dataset, the authors can infer its structure in a much better way than current approaches, generating more intuitive models to progress toward visual representations. Findings – With no technical knowledge required, focussing on metadata properties from a semantically annotated dataset could lead to automatically generated charts that allow to understand the dataset in an exploratory manner. Through interactive visualizations, users can navigate LOD sources using a natural approach, in order to save time and resources when dealing with an unknown resource for the first time. Research limitations/implications – This approach is suitable for available SPARQL endpoints and could be extended for resource description framework dumps loaded locally. Originality/value – Most works dealing with LOD vi...
期刊介绍:
■Automation of library and information services ■Storage and retrieval of all forms of electronic information ■Delivery of information to end users ■Database design and management ■Techniques for storing and distributing information ■Networking and communications technology ■The Internet ■User interface design ■Procurement of systems ■User training and support ■System evaluation