Knowledge-guided automatic segmentation of the left ventricle from MR

A. Pednekar, I. A. Kadadiaris, R. Muthupillai, S. Flamm
{"title":"Knowledge-guided automatic segmentation of the left ventricle from MR","authors":"A. Pednekar, I. A. Kadadiaris, R. Muthupillai, S. Flamm","doi":"10.1109/CIC.2002.1166740","DOIUrl":null,"url":null,"abstract":"The routinely used clinical practice of manual tracing of the blood pool from short axis cine MR images to compute ejection fraction (EF) is cumbersome, time consuming, and operator dependent. In this paper we present an algorithm that automatically segments the left ventricle (LV) using the a priori knowledge of the intensity responses of the tissue in different MR modalities, along with the LV morphology. Our method for the automatic computation of the EF is based on segmenting the left ventricle by combining the fuzzy connectedness and the physics-based deformable model frameworks. We have validated our method against manual delineation performed by experienced radiologists on the data from nine asymptomatic volunteers with very encouraging results.","PeriodicalId":80984,"journal":{"name":"Computers in cardiology","volume":"1 1","pages":"193-196"},"PeriodicalIF":0.0000,"publicationDate":"2002-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/CIC.2002.1166740","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIC.2002.1166740","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

The routinely used clinical practice of manual tracing of the blood pool from short axis cine MR images to compute ejection fraction (EF) is cumbersome, time consuming, and operator dependent. In this paper we present an algorithm that automatically segments the left ventricle (LV) using the a priori knowledge of the intensity responses of the tissue in different MR modalities, along with the LV morphology. Our method for the automatic computation of the EF is based on segmenting the left ventricle by combining the fuzzy connectedness and the physics-based deformable model frameworks. We have validated our method against manual delineation performed by experienced radiologists on the data from nine asymptomatic volunteers with very encouraging results.
知识引导下的左心室MR自动分割
常规使用的临床实践是从短轴电影MR图像中手动追踪血池以计算射血分数(EF)是繁琐,耗时且依赖于操作员的。在本文中,我们提出了一种算法,该算法使用不同MR模式下组织强度响应的先验知识自动分割左心室(LV),以及LV形态。我们将模糊连通性和基于物理的可变形模型框架相结合,在分割左心室的基础上实现了EF的自动计算。我们在9名无症状志愿者的数据上验证了我们的方法,与经验丰富的放射科医生进行的手动划定进行了对比,结果非常令人鼓舞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信