Comparison between overall and respective electrical rectifications in array of piezoelectric energy harvesting

IF 1.5 4区 工程技术 Q3 MECHANICS
I. Lien, Y. Lo, S. Chiu, Y. C. Shu
{"title":"Comparison between overall and respective electrical rectifications in array of piezoelectric energy harvesting","authors":"I. Lien, Y. Lo, S. Chiu, Y. C. Shu","doi":"10.1093/jom/ufac039","DOIUrl":null,"url":null,"abstract":"The article compares two different electrical rectifications employed by a piezoelectric harvester array. The first type consists of parallel connection of harvesters followed by an AC–DC full-bridge rectifier for overall electrical rectification. The second type allows for respective electrical rectification of each individual harvester, and then connecting them all in parallel. The former exhibits stronger electromechanical coupling effect for enhancing output power. The latter is capable of avoiding charge cancelation for improving bandwidth. The analysis of the electromechanical response of these two types is provided with full derivations for the second case. The predictions of displacement and output power are compared with the experiment and the results show good agreement. Two recommendations are offered from the present studies. First, suppose the power dissipations due to voltage gaps across the rectifiers are insignificant compared with the amount of output power realized by each individual harvester. The piezoelectric harvester array with respective electrical rectification exhibits better performance than that with the overall rectification from the broadband point of view at the cost of reducing peak power. On the contrary, if the amount of power dissipations can not be neglected or the harvester exhibits the strongly coupled electromechanical response, it is recommended to employ the harvester array allowing the mixed parallel/series connections switched by DPDT (Double-Pole Double-Throw). The array of the mixed type with overall electrical rectification exhibits performance significantly outperforming the array with respective electrical rectification from the point of view of broadband and power enhancement.","PeriodicalId":50136,"journal":{"name":"Journal of Mechanics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jom/ufac039","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 2

Abstract

The article compares two different electrical rectifications employed by a piezoelectric harvester array. The first type consists of parallel connection of harvesters followed by an AC–DC full-bridge rectifier for overall electrical rectification. The second type allows for respective electrical rectification of each individual harvester, and then connecting them all in parallel. The former exhibits stronger electromechanical coupling effect for enhancing output power. The latter is capable of avoiding charge cancelation for improving bandwidth. The analysis of the electromechanical response of these two types is provided with full derivations for the second case. The predictions of displacement and output power are compared with the experiment and the results show good agreement. Two recommendations are offered from the present studies. First, suppose the power dissipations due to voltage gaps across the rectifiers are insignificant compared with the amount of output power realized by each individual harvester. The piezoelectric harvester array with respective electrical rectification exhibits better performance than that with the overall rectification from the broadband point of view at the cost of reducing peak power. On the contrary, if the amount of power dissipations can not be neglected or the harvester exhibits the strongly coupled electromechanical response, it is recommended to employ the harvester array allowing the mixed parallel/series connections switched by DPDT (Double-Pole Double-Throw). The array of the mixed type with overall electrical rectification exhibits performance significantly outperforming the array with respective electrical rectification from the point of view of broadband and power enhancement.
压电能量收集阵列整体整流与各自整流的比较
本文比较了压电采集器阵列所采用的两种不同的电整流。第一种类型包括采集器的并联,然后是交流-直流全桥整流器,用于整体电气整流。第二种类型允许对每个单独的收割机进行各自的电气整流,然后将它们并联起来。前者具有较强的机电耦合效应,可提高输出功率。后者能够避免费用取消,以提高带宽。对这两种情况的机电响应分析给出了第二种情况的完整推导。将预测的位移和输出功率与实验结果进行了比较,结果吻合较好。从目前的研究中提出了两条建议。首先,假设由于整流器电压间隙造成的功率损耗与每个单独采集器实现的输出功率相比微不足道。从宽带角度来看,分别电整流的压电收割机阵列表现出比整体整流更好的性能,但代价是降低峰值功率。相反,如果功耗不能忽略,或者收割机表现出强耦合的机电响应,则建议采用收割机阵列,允许通过DPDT(双极双掷)切换混合并联/串联连接。从宽带和功率增强的角度来看,具有整体电整流的混合型阵列的性能明显优于具有各自电整流的阵列。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mechanics
Journal of Mechanics 物理-力学
CiteScore
3.20
自引率
11.80%
发文量
20
审稿时长
6 months
期刊介绍: The objective of the Journal of Mechanics is to provide an international forum to foster exchange of ideas among mechanics communities in different parts of world. The Journal of Mechanics publishes original research in all fields of theoretical and applied mechanics. The Journal especially welcomes papers that are related to recent technological advances. The contributions, which may be analytical, experimental or numerical, should be of significance to the progress of mechanics. Papers which are merely illustrations of established principles and procedures will generally not be accepted. Reports that are of technical interest are published as short articles. Review articles are published only by invitation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信