{"title":"Stroh formalism for various types of materials and deformations","authors":"C. Hwu, W. Becker","doi":"10.1093/jom/ufac031","DOIUrl":null,"url":null,"abstract":"The Stroh formalism is a complex variable formulation developed originally for solving the problems of two-dimensional linear anisotropic elasticity. By separation of the third variable for the linear variation of displacements along the thickness direction, it was proved to be applicable for the problems with coupled stretching-bending deformation. By the Radon transform which maps a three-dimensional solid to a two-dimensional plane, it can be applied to the three-dimensional deformation. By the elastic-viscoelastic correspondence principle, it is also valid for the viscoelastic materials in the Laplace domain. By expansion of the matrix dimension, it can be generalized to the coupled-field materials such as piezoelectric, piezomagnetic and magneto-electro-elastic materials. By introducing a small perturbation on the material constants, it can also be applied to the degenerate materials such as isotropic materials. Thus, in this paper, the Stroh formalism for several different types of materials (anisotropic elastic, piezoelectric, piezomagnetic, magneto-electro-elastic, viscoelastic) and deformations (two-dimensional, coupled stretching-bending, three-dimensional) are organized together and presented in the same mathematical form.","PeriodicalId":50136,"journal":{"name":"Journal of Mechanics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jom/ufac031","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 1
Abstract
The Stroh formalism is a complex variable formulation developed originally for solving the problems of two-dimensional linear anisotropic elasticity. By separation of the third variable for the linear variation of displacements along the thickness direction, it was proved to be applicable for the problems with coupled stretching-bending deformation. By the Radon transform which maps a three-dimensional solid to a two-dimensional plane, it can be applied to the three-dimensional deformation. By the elastic-viscoelastic correspondence principle, it is also valid for the viscoelastic materials in the Laplace domain. By expansion of the matrix dimension, it can be generalized to the coupled-field materials such as piezoelectric, piezomagnetic and magneto-electro-elastic materials. By introducing a small perturbation on the material constants, it can also be applied to the degenerate materials such as isotropic materials. Thus, in this paper, the Stroh formalism for several different types of materials (anisotropic elastic, piezoelectric, piezomagnetic, magneto-electro-elastic, viscoelastic) and deformations (two-dimensional, coupled stretching-bending, three-dimensional) are organized together and presented in the same mathematical form.
期刊介绍:
The objective of the Journal of Mechanics is to provide an international forum to foster exchange of ideas among mechanics communities in different parts of world. The Journal of Mechanics publishes original research in all fields of theoretical and applied mechanics. The Journal especially welcomes papers that are related to recent technological advances. The contributions, which may be analytical, experimental or numerical, should be of significance to the progress of mechanics. Papers which are merely illustrations of established principles and procedures will generally not be accepted. Reports that are of technical interest are published as short articles. Review articles are published only by invitation.