Computational flow analysis with boundary layer and contact representation: II. Heart valve flow with leaflet contact

IF 1.5 4区 工程技术 Q3 MECHANICS
Takuya Terahara, T. Kuraishi, K. Takizawa, T. Tezduyar
{"title":"Computational flow analysis with boundary layer and contact representation: II. Heart valve flow with leaflet contact","authors":"Takuya Terahara, T. Kuraishi, K. Takizawa, T. Tezduyar","doi":"10.1093/jom/ufac013","DOIUrl":null,"url":null,"abstract":"In this second part of a two-part article, we provide an overview of the heart valve flow analyses conducted with boundary layer and contact representation, made possible with the space–time (ST) computational methods described in the first part. With these ST methods, we are able to represent the boundary layers near moving solid surfaces, including the valve leaflet surfaces, with the accuracy one gets from moving-mesh methods and without the need for leaving a mesh protection gap between the surfaces coming into contact. The challenge of representing the contact between the leaflets without giving up on high-resolution flow representation near the leaflet surfaces has been overcome. The other challenges that have been overcome include the complexities of a near-actual valve geometry, having in the computational model a left ventricle with an anatomically realistic motion and an aorta from CT scans and maintaining the flow stability at the inflow of the ventricle-valve-aorta sequence, where we have a traction boundary condition during part of the cardiac cycle.","PeriodicalId":50136,"journal":{"name":"Journal of Mechanics","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jom/ufac013","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 13

Abstract

In this second part of a two-part article, we provide an overview of the heart valve flow analyses conducted with boundary layer and contact representation, made possible with the space–time (ST) computational methods described in the first part. With these ST methods, we are able to represent the boundary layers near moving solid surfaces, including the valve leaflet surfaces, with the accuracy one gets from moving-mesh methods and without the need for leaving a mesh protection gap between the surfaces coming into contact. The challenge of representing the contact between the leaflets without giving up on high-resolution flow representation near the leaflet surfaces has been overcome. The other challenges that have been overcome include the complexities of a near-actual valve geometry, having in the computational model a left ventricle with an anatomically realistic motion and an aorta from CT scans and maintaining the flow stability at the inflow of the ventricle-valve-aorta sequence, where we have a traction boundary condition during part of the cardiac cycle.
边界层与接触表示的计算流分析[j]。心脏瓣膜流动与小叶接触
在由两部分组成的文章的第二部分中,我们概述了使用边界层和接触表示进行的心脏瓣膜流动分析,这使得第一部分中描述的时空(ST)计算方法成为可能。通过这些ST方法,我们能够表示移动固体表面附近的边界层,包括阀门叶片表面,具有从移动网格方法获得的精度,并且不需要在接触的表面之间留下网格保护间隙。在不放弃小叶表面附近的高分辨率流表示的情况下表示小叶之间接触的挑战已经克服。已经克服的其他挑战包括接近实际的瓣膜几何结构的复杂性,在计算模型中有一个具有解剖学上真实运动的左心室和CT扫描的主动脉,并保持心室-瓣膜-主动脉序列流入的流量稳定性,在心脏周期的一部分我们有牵引边界条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mechanics
Journal of Mechanics 物理-力学
CiteScore
3.20
自引率
11.80%
发文量
20
审稿时长
6 months
期刊介绍: The objective of the Journal of Mechanics is to provide an international forum to foster exchange of ideas among mechanics communities in different parts of world. The Journal of Mechanics publishes original research in all fields of theoretical and applied mechanics. The Journal especially welcomes papers that are related to recent technological advances. The contributions, which may be analytical, experimental or numerical, should be of significance to the progress of mechanics. Papers which are merely illustrations of established principles and procedures will generally not be accepted. Reports that are of technical interest are published as short articles. Review articles are published only by invitation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信