{"title":"Gradient Estimates of ω-Minimizers to Double Phase Variational Problems with Variable Exponents","authors":"Sun-Sig Byun, Ho-Sik Lee","doi":"10.1093/QMATH/HAAA067","DOIUrl":null,"url":null,"abstract":"\n We are concerned with an optimal regularity for ω-minimizers to double phase variational problems with variable exponents where the associated energy density is allowed to be discontinuous. We identify basic structure assumptions on the density for the absence of Lavrentiev phenomenon and higher integrability. Moreover, we establish a local Calderón–Zygmund theory for such generalized minimizers under minimal regularity requirements regarding such double phase functionals to the frame of Lebesgue spaces with variable exponents.","PeriodicalId":54522,"journal":{"name":"Quarterly Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/QMATH/HAAA067","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/QMATH/HAAA067","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4
Abstract
We are concerned with an optimal regularity for ω-minimizers to double phase variational problems with variable exponents where the associated energy density is allowed to be discontinuous. We identify basic structure assumptions on the density for the absence of Lavrentiev phenomenon and higher integrability. Moreover, we establish a local Calderón–Zygmund theory for such generalized minimizers under minimal regularity requirements regarding such double phase functionals to the frame of Lebesgue spaces with variable exponents.
期刊介绍:
The Quarterly Journal of Mathematics publishes original contributions to pure mathematics. All major areas of pure mathematics are represented on the editorial board.