{"title":"The use of complex integral representations for analytical evaluation of three-dimensional BEM integrals - Potential and elasticity problems","authors":"S. Mogilevskaya, D. Nikolskiy","doi":"10.1093/QJMAM/HBU015","DOIUrl":null,"url":null,"abstract":"Summary The article presents a new complex variables-based approach for analytical evaluation of threedimensional integrals involved in boundary element method (BEM) formulations. The boundary element is assumed to be planar and its boundary may contain an arbitrary number of straight lines and/or circular arcs. The idea is to use BEM integral representations written in a local coordinate system of an element, separate in-plane components of the fields involved, arrange them in certain complex combinations, and apply integral representations for complex functions. These integral representations, such as Cauchy–Pompeiu formula (a particular case of Bochner– Martinelli formula) are the corollaries of complex forms of Gauss’s theorem and Green’s identity. They reduce the integrals over the area of the domain to those over its boundary. The latter integrals can be evaluated analytically for various density functions. Analytical expressions are presented for basic integrals involved in the single- and double-layer potentials for potential (harmonic) and elasticity problems.","PeriodicalId":56087,"journal":{"name":"Quarterly Journal of Mechanics and Applied Mathematics","volume":"67 1","pages":"505-523"},"PeriodicalIF":0.8000,"publicationDate":"2014-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/QJMAM/HBU015","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of Mechanics and Applied Mathematics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/QJMAM/HBU015","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 18
Abstract
Summary The article presents a new complex variables-based approach for analytical evaluation of threedimensional integrals involved in boundary element method (BEM) formulations. The boundary element is assumed to be planar and its boundary may contain an arbitrary number of straight lines and/or circular arcs. The idea is to use BEM integral representations written in a local coordinate system of an element, separate in-plane components of the fields involved, arrange them in certain complex combinations, and apply integral representations for complex functions. These integral representations, such as Cauchy–Pompeiu formula (a particular case of Bochner– Martinelli formula) are the corollaries of complex forms of Gauss’s theorem and Green’s identity. They reduce the integrals over the area of the domain to those over its boundary. The latter integrals can be evaluated analytically for various density functions. Analytical expressions are presented for basic integrals involved in the single- and double-layer potentials for potential (harmonic) and elasticity problems.
期刊介绍:
The Quarterly Journal of Mechanics and Applied Mathematics publishes original research articles on the application of mathematics to the field of mechanics interpreted in its widest sense. In addition to traditional areas, such as fluid and solid mechanics, the editors welcome submissions relating to any modern and emerging areas of applied mathematics.