S. J. Doyle, A. Mancini, M. Agredano-Torres, J. L. García-Sánchez, J. Segado-Fernandez, J. Ayllon-Guerola, M. Garcia-Muñoz, E. Viezzer, J. Garcia-Lopez, Y. Hwang, K. Chung
{"title":"Single and double null equilibria in the SMART Tokamak","authors":"S. J. Doyle, A. Mancini, M. Agredano-Torres, J. L. García-Sánchez, J. Segado-Fernandez, J. Ayllon-Guerola, M. Garcia-Muñoz, E. Viezzer, J. Garcia-Lopez, Y. Hwang, K. Chung","doi":"10.1088/2516-1067/ac2a0e","DOIUrl":null,"url":null,"abstract":"The SMall Aspect Ratio Tokamak (SMART) device is a novel, compact (R geo = 0.42 m, a = 0.22 m, A ≥ 1.70) spherical tokamak, currently under development at the University of Seville. The SMART device is being developed over 3 phases, with target on-axis toroidal magnetic fields between 0.1 ≤ B ϕ ≤ 1.0 T, and target plasma currents of between 35 ≤ I p ≤ 400 kA; with phases 2 and 3 enabling access to a wide range of elongations (κ ≤ 2.30) and triangularities ( − 0.50 ≤ δ ≤ 0.50). SMART employs four internal divertor coils with two internal and two external poloidal field coils, enabling operation in lower-single, upper-single and double-null configurations. This work examines phase 3 of the SMART device, presenting a prospective L-mode discharge scenario without external heating, before examining five highly-shaped equilibria, including: two double null triangular configurations, two single null triangular configurations and a baseline double null configuration. All equilibria are obtained via an axisymmetric Grad-Shafranov force balance solver (Fiesta), in combination with a circuit equation rigid current displacement model (RZIp) to obtain time-resolved vessel and plasma currents.","PeriodicalId":36295,"journal":{"name":"Plasma Research Express","volume":"375 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Research Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1067/ac2a0e","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 2
Abstract
The SMall Aspect Ratio Tokamak (SMART) device is a novel, compact (R geo = 0.42 m, a = 0.22 m, A ≥ 1.70) spherical tokamak, currently under development at the University of Seville. The SMART device is being developed over 3 phases, with target on-axis toroidal magnetic fields between 0.1 ≤ B ϕ ≤ 1.0 T, and target plasma currents of between 35 ≤ I p ≤ 400 kA; with phases 2 and 3 enabling access to a wide range of elongations (κ ≤ 2.30) and triangularities ( − 0.50 ≤ δ ≤ 0.50). SMART employs four internal divertor coils with two internal and two external poloidal field coils, enabling operation in lower-single, upper-single and double-null configurations. This work examines phase 3 of the SMART device, presenting a prospective L-mode discharge scenario without external heating, before examining five highly-shaped equilibria, including: two double null triangular configurations, two single null triangular configurations and a baseline double null configuration. All equilibria are obtained via an axisymmetric Grad-Shafranov force balance solver (Fiesta), in combination with a circuit equation rigid current displacement model (RZIp) to obtain time-resolved vessel and plasma currents.