The subsystem quantum chemistry program Serenity

IF 16.8 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Niklas Niemeyer, Patrick Eschenbach, Moritz Bensberg, Johannes T?lle, Lars Hellmann, Lukas Lampe, Anja Massolle, Anton Rikus, David Schnieders, Jan P. Unsleber, Johannes Neugebauer
{"title":"The subsystem quantum chemistry program Serenity","authors":"Niklas Niemeyer,&nbsp;Patrick Eschenbach,&nbsp;Moritz Bensberg,&nbsp;Johannes T?lle,&nbsp;Lars Hellmann,&nbsp;Lukas Lampe,&nbsp;Anja Massolle,&nbsp;Anton Rikus,&nbsp;David Schnieders,&nbsp;Jan P. Unsleber,&nbsp;Johannes Neugebauer","doi":"10.1002/wcms.1647","DOIUrl":null,"url":null,"abstract":"<p>SERENITY [J Comput Chem<i>.</i> 2018;39:788–798] is an open-source quantum chemistry software that provides an extensive development platform focused on quantum-mechanical multilevel and embedding approaches. In this study, we give an overview over the developments done in Serenity since its original publication in 2018. This includes efficient electronic-structure methods for ground states such as multilevel domain-based local pair natural orbital coupled cluster and Møller–Plesset perturbation theory as well as the multistate frozen-density embedding quasi-diabatization method. For the description of excited states, SERENITY features various subsystem-based methods such as embedding variants of coupled time-dependent density-functional theory, approximate second-order coupled cluster theory and the second-order algebraic diagrammatic construction technique as well as GW/Bethe–Salpeter equation approaches. SERENITY's modular structure allows combining these methods with density-functional theory (DFT)-based embedding through various practical realizations and variants of subsystem DFT including frozen-density embedding, potential-reconstruction techniques and projection-based embedding.</p><p>This article is categorized under:\n </p>","PeriodicalId":236,"journal":{"name":"Wiley Interdisciplinary Reviews: Computational Molecular Science","volume":"13 3","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/wcms.1647","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wiley Interdisciplinary Reviews: Computational Molecular Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/wcms.1647","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 7

Abstract

SERENITY [J Comput Chem. 2018;39:788–798] is an open-source quantum chemistry software that provides an extensive development platform focused on quantum-mechanical multilevel and embedding approaches. In this study, we give an overview over the developments done in Serenity since its original publication in 2018. This includes efficient electronic-structure methods for ground states such as multilevel domain-based local pair natural orbital coupled cluster and Møller–Plesset perturbation theory as well as the multistate frozen-density embedding quasi-diabatization method. For the description of excited states, SERENITY features various subsystem-based methods such as embedding variants of coupled time-dependent density-functional theory, approximate second-order coupled cluster theory and the second-order algebraic diagrammatic construction technique as well as GW/Bethe–Salpeter equation approaches. SERENITY's modular structure allows combining these methods with density-functional theory (DFT)-based embedding through various practical realizations and variants of subsystem DFT including frozen-density embedding, potential-reconstruction techniques and projection-based embedding.

This article is categorized under:

Abstract Image

子系统量子化学项目宁静号
SERENITY是一个开源的量子化学软件,提供了一个广泛的开发平台,专注于量子力学的多层次和嵌入方法。在本研究中,我们概述了自2018年首次发布以来在Serenity中所做的发展。这包括有效的基态电子结构方法,如基于多能级域的局域对自然轨道耦合簇和Møller-Plesset微扰理论,以及多态冷冻密度嵌入准糖化方法。对于激发态的描述,SERENITY采用了多种基于子系统的方法,如耦合时相关密度泛函理论的嵌入变体、近似二阶耦合聚类理论和二阶代数图构建技术以及GW/ Bethe-Salpeter方程方法。SERENITY的模块化结构允许将这些方法与基于密度泛函理论(DFT)的嵌入相结合,通过各种实际实现和子系统DFT的变体,包括冻结密度嵌入、潜在重建技术和基于投影的嵌入。本文分类如下:
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Wiley Interdisciplinary Reviews: Computational Molecular Science
Wiley Interdisciplinary Reviews: Computational Molecular Science CHEMISTRY, MULTIDISCIPLINARY-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
28.90
自引率
1.80%
发文量
52
审稿时长
6-12 weeks
期刊介绍: Computational molecular sciences harness the power of rigorous chemical and physical theories, employing computer-based modeling, specialized hardware, software development, algorithm design, and database management to explore and illuminate every facet of molecular sciences. These interdisciplinary approaches form a bridge between chemistry, biology, and materials sciences, establishing connections with adjacent application-driven fields in both chemistry and biology. WIREs Computational Molecular Science stands as a platform to comprehensively review and spotlight research from these dynamic and interconnected fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信