{"title":"Platelet-activating factor receptor.","authors":"Z. Honda, S. Ishii, Takao Shimizu","doi":"10.1093/OXFORDJOURNALS.JBCHEM.A003164","DOIUrl":null,"url":null,"abstract":"Platelet-activating factor (PAF) is a pro-inflammatory lipid mediator possessing a unique 1-O-alkyl glycerophospholipid (GPC) backbone (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholin). Cloned PAF receptor, which belongs to the G protein-coupled receptor superfamily, transduces pleiotropic functions including cell motility, smooth muscle contraction, and synthesis and release of mediators and cytokines via multiple heterotrimeric G proteins. Pharmacological studies have suggested that PAF functions in a variety of settings including allergy, inflammation, neural functions, reproduction, and atherosclerosis. Establishment of PAFR(-/-) mice confirmed that the PAF receptor is responsible for pro-inflammatory responses, but that its roles in other settings remain to be clarified.","PeriodicalId":79347,"journal":{"name":"Journal of lipid mediators and cell signalling","volume":"131 6 1","pages":"773-9"},"PeriodicalIF":0.0000,"publicationDate":"2002-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1093/OXFORDJOURNALS.JBCHEM.A003164","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of lipid mediators and cell signalling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/OXFORDJOURNALS.JBCHEM.A003164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44
Abstract
Platelet-activating factor (PAF) is a pro-inflammatory lipid mediator possessing a unique 1-O-alkyl glycerophospholipid (GPC) backbone (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholin). Cloned PAF receptor, which belongs to the G protein-coupled receptor superfamily, transduces pleiotropic functions including cell motility, smooth muscle contraction, and synthesis and release of mediators and cytokines via multiple heterotrimeric G proteins. Pharmacological studies have suggested that PAF functions in a variety of settings including allergy, inflammation, neural functions, reproduction, and atherosclerosis. Establishment of PAFR(-/-) mice confirmed that the PAF receptor is responsible for pro-inflammatory responses, but that its roles in other settings remain to be clarified.