Cumulants of Jack symmetric functions and $b$-conjecture

IF 0.7 4区 数学
Maciej Dolkega, Valentin F'eray
{"title":"Cumulants of Jack symmetric functions and $b$-conjecture","authors":"Maciej Dolkega, Valentin F'eray","doi":"10.1090/tran/7191","DOIUrl":null,"url":null,"abstract":"Goulden and Jackson (1996) introduced, using Jack symmetric functions, some multivariate generating series $\\psi(x, y, z; t, 1+\\beta)$ that might be interpreted as a continuous deformation of the generating series of rooted hypermaps. They made the following conjecture: the coefficients of $\\psi(x, y, z; t, 1+\\beta)$ in the power-sum basis are polynomials in $\\beta$ with nonnegative integer coefficients (by construction, these coefficients are rational functions in $\\beta$). \nWe prove partially this conjecture, nowadays called $b$-conjecture, by showing that coefficients of $\\psi(x, y, z; t, 1+ \\beta)$ are polynomials in $\\beta$ with rational coefficients. A key step of the proof is a strong factorization property of Jack polynomials when the Jack-deformation parameter $\\alpha$ tends to $0$, that may be of independent interest.","PeriodicalId":55175,"journal":{"name":"Discrete Mathematics and Theoretical Computer Science","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2016-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/tran/7191","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics and Theoretical Computer Science","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/tran/7191","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Goulden and Jackson (1996) introduced, using Jack symmetric functions, some multivariate generating series $\psi(x, y, z; t, 1+\beta)$ that might be interpreted as a continuous deformation of the generating series of rooted hypermaps. They made the following conjecture: the coefficients of $\psi(x, y, z; t, 1+\beta)$ in the power-sum basis are polynomials in $\beta$ with nonnegative integer coefficients (by construction, these coefficients are rational functions in $\beta$). We prove partially this conjecture, nowadays called $b$-conjecture, by showing that coefficients of $\psi(x, y, z; t, 1+ \beta)$ are polynomials in $\beta$ with rational coefficients. A key step of the proof is a strong factorization property of Jack polynomials when the Jack-deformation parameter $\alpha$ tends to $0$, that may be of independent interest.
杰克对称函数的累积量与$b$-猜想
Goulden和Jackson(1996)利用Jack对称函数引入了一些多元生成序列$\psi(x, y, z; t, 1+\beta)$,这些生成序列可以解释为有根超映射生成序列的连续变形。他们做了如下的猜想:$\psi(x, y, z; t, 1+\beta)$在幂和基中的系数是$\beta$中具有非负整数系数的多项式(通过构造,这些系数是$\beta$中的有理函数)。我们通过证明$\psi(x, y, z; t, 1+ \beta)$的系数是$\beta$中具有有理系数的多项式,部分地证明了这个猜想,现在称为$b$ -猜想。证明的一个关键步骤是当千斤顶变形参数$\alpha$趋于$0$时,千斤顶多项式的强分解性质,这可能是独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
14.30%
发文量
39
期刊介绍: DMTCS is a open access scientic journal that is online since 1998. We are member of the Free Journal Network. Sections of DMTCS Analysis of Algorithms Automata, Logic and Semantics Combinatorics Discrete Algorithms Distributed Computing and Networking Graph Theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信