Derivational derivatives and Feynman's operational calculi

G. Johnson, B. Kim
{"title":"Derivational derivatives and Feynman's operational calculi","authors":"G. Johnson, B. Kim","doi":"10.1093/acprof:oso/9780198702498.003.0009","DOIUrl":null,"url":null,"abstract":"This paper explores the differential (or derivational) calculus associated with the disentangled operators arising from Feynman's operational calculi (FOCi) for noncommuting operators. (We will use the continuous case of the approach to FOCi initiated by Jefferies and Johnson in 2000.) The central part of this paper deals with a first order infinitesimal calculus for a function of n noncommuting operators. Here the first derivatives (or differentials) are replaced by the first order derivational derivatives. The derivational derivatives of the first and higher order have been useful in, for example, operator algebras, noncommutative geometry and Maslov's discrete form of Feynman's operational calculus. In the last section of this paper we will develop some special cases of higher order expansions.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2009-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/acprof:oso/9780198702498.003.0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper explores the differential (or derivational) calculus associated with the disentangled operators arising from Feynman's operational calculi (FOCi) for noncommuting operators. (We will use the continuous case of the approach to FOCi initiated by Jefferies and Johnson in 2000.) The central part of this paper deals with a first order infinitesimal calculus for a function of n noncommuting operators. Here the first derivatives (or differentials) are replaced by the first order derivational derivatives. The derivational derivatives of the first and higher order have been useful in, for example, operator algebras, noncommutative geometry and Maslov's discrete form of Feynman's operational calculus. In the last section of this paper we will develop some special cases of higher order expansions.
分享
查看原文
导数导数和费曼运算演算
本文探讨了非可交换算子的Feynman运算演算(FOCi)中与解纠缠算子相关的微分(或导数)演算。(我们将使用Jefferies和Johnson在2000年发起的FOCi方法的连续案例。)本文的中心部分讨论了n个非交换算子函数的一阶无穷小微积分问题。这里一阶导数(或微分)被一阶导数所取代。一阶和高阶的导数在算子代数、非交换几何和费曼运算微积分的马斯洛夫离散形式中都很有用。在本文的最后一节,我们将给出一些高阶展开的特殊情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信