Necessary and sufficient condition for the stabilization of the solution of a mixed problem for nondivergence parabolic equations to zero

Q2 Mathematics
Yu. A. Alkhutov, V. N. Denisov
{"title":"Necessary and sufficient condition for the stabilization of the solution of a mixed problem for nondivergence parabolic equations to zero","authors":"Yu. A. Alkhutov, V. N. Denisov","doi":"10.1090/S0077-1554-2014-00233-8","DOIUrl":null,"url":null,"abstract":"We consider the first boundary value problem in a cylindrical domain for a uniformly parabolic second-order equation in nondivergence form. The solution satisfies the homogeneous Dirichlet condition on the lateral surface of the cylinder, and the initial function is bounded. We show that if the coefficients of the equation satisfy the local and global Dini conditions, then a necessary and sufficient condition for the stabilization of the solution to zero coincides with a similar condition for the heat equation.","PeriodicalId":37924,"journal":{"name":"Transactions of the Moscow Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2014-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/S0077-1554-2014-00233-8","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Moscow Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/S0077-1554-2014-00233-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 6

Abstract

We consider the first boundary value problem in a cylindrical domain for a uniformly parabolic second-order equation in nondivergence form. The solution satisfies the homogeneous Dirichlet condition on the lateral surface of the cylinder, and the initial function is bounded. We show that if the coefficients of the equation satisfy the local and global Dini conditions, then a necessary and sufficient condition for the stabilization of the solution to zero coincides with a similar condition for the heat equation.
一类非散度抛物型方程混合问题解趋于零的充分必要条件
考虑一类非散度形式的均匀抛物型二阶方程在圆柱域上的第一边值问题。解在柱面上满足齐次狄利克雷条件,且初始函数有界。我们证明了如果方程的系数满足局部和全局Dini条件,那么解稳定于零的充分必要条件与热方程的类似条件是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Transactions of the Moscow Mathematical Society
Transactions of the Moscow Mathematical Society Mathematics-Mathematics (miscellaneous)
自引率
0.00%
发文量
19
期刊介绍: This journal, a translation of Trudy Moskovskogo Matematicheskogo Obshchestva, contains the results of original research in pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信