Properties of solutions of integro-differential equations arising in heat and mass transfer theory

Q2 Mathematics
V. V. Vlasov, N. Rautian
{"title":"Properties of solutions of integro-differential equations arising in heat and mass transfer theory","authors":"V. V. Vlasov, N. Rautian","doi":"10.1090/S0077-1554-2014-00231-4","DOIUrl":null,"url":null,"abstract":". The aim of the present paper is to study the asymptotic behavior of solutions of integro-differential equations on the basis of spectral analysis of their symbols. To this end, we obtain representations of strong solutions of these equations in the form of a sum of terms corresponding to the real and nonreal parts of the spectrum of the operator functions that are the symbols of these equations. These representations are new for the class of integro-differential equations considered in the paper.","PeriodicalId":37924,"journal":{"name":"Transactions of the Moscow Mathematical Society","volume":"75 1","pages":"185-204"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/S0077-1554-2014-00231-4","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Moscow Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/S0077-1554-2014-00231-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 13

Abstract

. The aim of the present paper is to study the asymptotic behavior of solutions of integro-differential equations on the basis of spectral analysis of their symbols. To this end, we obtain representations of strong solutions of these equations in the form of a sum of terms corresponding to the real and nonreal parts of the spectrum of the operator functions that are the symbols of these equations. These representations are new for the class of integro-differential equations considered in the paper.
热质传递理论中积分-微分方程解的性质
. 本文在积分微分方程符号谱分析的基础上,研究了积分微分方程解的渐近性质。为此,我们得到了这些方程的强解的表示形式,即对应于作为这些方程符号的算子函数谱的实部和非实部的项的和。这些表示对于本文所考虑的一类积分-微分方程是新的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Transactions of the Moscow Mathematical Society
Transactions of the Moscow Mathematical Society Mathematics-Mathematics (miscellaneous)
自引率
0.00%
发文量
19
期刊介绍: This journal, a translation of Trudy Moskovskogo Matematicheskogo Obshchestva, contains the results of original research in pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信