An asymptotic formula for polynomials orthonormal with respect to a varying weight

Q2 Mathematics
Trudy Moskov, Matem, Obw, A. Komlov, S. Suetin
{"title":"An asymptotic formula for polynomials orthonormal with respect to a varying weight","authors":"Trudy Moskov, Matem, Obw, A. Komlov, S. Suetin","doi":"10.1090/S0077-1554-2013-00204-6","DOIUrl":null,"url":null,"abstract":". We obtain a strong asymptotic formula for the leading coefficient α n ( n ) of a degree n polynomial q n ( z ; n ) orthonormal on a system of intervals on the real line with respect to a varying weight. The weight depends on n as e − 2 nQ ( x ) , where Q ( x ) is a polynomial and corresponds to the “hard-edge case”. The formula in Theorem 1 is quite similar to Widom’s classical formula for a weight independent of n . In some sense, Widom’s formulas are still true for a varying weight and are thus universal. As a consequence of the asymptotic formula we have that α n ( n ) e − nw Q oscillates as n → ∞ and, in a typical case, fills an interval (here w Q is the equilibrium constant in the external field Q ).","PeriodicalId":37924,"journal":{"name":"Transactions of the Moscow Mathematical Society","volume":"73 1","pages":"139-159"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Moscow Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/S0077-1554-2013-00204-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 9

Abstract

. We obtain a strong asymptotic formula for the leading coefficient α n ( n ) of a degree n polynomial q n ( z ; n ) orthonormal on a system of intervals on the real line with respect to a varying weight. The weight depends on n as e − 2 nQ ( x ) , where Q ( x ) is a polynomial and corresponds to the “hard-edge case”. The formula in Theorem 1 is quite similar to Widom’s classical formula for a weight independent of n . In some sense, Widom’s formulas are still true for a varying weight and are thus universal. As a consequence of the asymptotic formula we have that α n ( n ) e − nw Q oscillates as n → ∞ and, in a typical case, fills an interval (here w Q is the equilibrium constant in the external field Q ).
一个关于变权多项式标准正交的渐近公式
. 得到了n次多项式q n (z)的导系数α n (n)的一个强渐近公式;N)在实数线上的区间系统上关于变权值的标准正交。权重取决于n为e - 2 nQ (x),其中Q (x)是一个多项式,对应于“硬边情况”。定理1中的公式与Widom的经典公式非常相似,它与n无关。在某种意义上,Widom的公式对于不同的权重仍然是正确的,因此是通用的。作为渐近公式的结果,我们得到α n (n) e - nw Q在n→∞时振荡,并且在典型情况下,填充一个区间(这里w Q是外场Q中的平衡常数)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Transactions of the Moscow Mathematical Society
Transactions of the Moscow Mathematical Society Mathematics-Mathematics (miscellaneous)
自引率
0.00%
发文量
19
期刊介绍: This journal, a translation of Trudy Moskovskogo Matematicheskogo Obshchestva, contains the results of original research in pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信