{"title":"On the poles of Picard potentials","authors":"A. Komlov","doi":"10.1090/S0077-1554-2010-00182-3","DOIUrl":null,"url":null,"abstract":"We study the existence of a global meromorphic fundamental system of solutions for a system of two differential equations Ex = (az + q(x))E, where a is a constant diagonal matrix, and q(x) is an off-diagonal meromorphic function, for each z ∈ C. Following Gesztesy and Weikard (1998), who investigated this property of functions q(x) and its connection to finite-gap solutions of soliton equations, we call such q(x) Picard potentials. We obtain conditions for the Picard property of various potentials q(x).","PeriodicalId":37924,"journal":{"name":"Transactions of the Moscow Mathematical Society","volume":"71 1","pages":"241-250"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/S0077-1554-2010-00182-3","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Moscow Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/S0077-1554-2010-00182-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2
Abstract
We study the existence of a global meromorphic fundamental system of solutions for a system of two differential equations Ex = (az + q(x))E, where a is a constant diagonal matrix, and q(x) is an off-diagonal meromorphic function, for each z ∈ C. Following Gesztesy and Weikard (1998), who investigated this property of functions q(x) and its connection to finite-gap solutions of soliton equations, we call such q(x) Picard potentials. We obtain conditions for the Picard property of various potentials q(x).