On the poles of Picard potentials

Q2 Mathematics
A. Komlov
{"title":"On the poles of Picard potentials","authors":"A. Komlov","doi":"10.1090/S0077-1554-2010-00182-3","DOIUrl":null,"url":null,"abstract":"We study the existence of a global meromorphic fundamental system of solutions for a system of two differential equations Ex = (az + q(x))E, where a is a constant diagonal matrix, and q(x) is an off-diagonal meromorphic function, for each z ∈ C. Following Gesztesy and Weikard (1998), who investigated this property of functions q(x) and its connection to finite-gap solutions of soliton equations, we call such q(x) Picard potentials. We obtain conditions for the Picard property of various potentials q(x).","PeriodicalId":37924,"journal":{"name":"Transactions of the Moscow Mathematical Society","volume":"71 1","pages":"241-250"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1090/S0077-1554-2010-00182-3","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Moscow Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/S0077-1554-2010-00182-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

We study the existence of a global meromorphic fundamental system of solutions for a system of two differential equations Ex = (az + q(x))E, where a is a constant diagonal matrix, and q(x) is an off-diagonal meromorphic function, for each z ∈ C. Following Gesztesy and Weikard (1998), who investigated this property of functions q(x) and its connection to finite-gap solutions of soliton equations, we call such q(x) Picard potentials. We obtain conditions for the Picard property of various potentials q(x).
在皮卡德势的两极上
我们研究了两个微分方程组Ex = (az + q(x))E的整体亚纯基本解系统的存在性,其中a是一个常数对角矩阵,q(x)是一个非对角亚纯函数,对于每个z∈c。继Gesztesy和Weikard(1998)研究了函数q(x)的这一性质及其与孤子方程有限间隙解的联系之后,我们称其为q(x) Picard势。我们得到了各种势q(x)的皮卡德性质的条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Transactions of the Moscow Mathematical Society
Transactions of the Moscow Mathematical Society Mathematics-Mathematics (miscellaneous)
自引率
0.00%
发文量
19
期刊介绍: This journal, a translation of Trudy Moskovskogo Matematicheskogo Obshchestva, contains the results of original research in pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信