Translational Research Trends: Urologic Gene Therapy

M. Gong, W. Fair
{"title":"Translational Research Trends: Urologic Gene Therapy","authors":"M. Gong, W. Fair","doi":"10.1089/10915360050138530","DOIUrl":null,"url":null,"abstract":"GENE THERAPY, a rapidly growing field of interest in the basic sciences, is a relatively new area of research and clinical application within urology. With increasing technological advances, the number of gene therapy-based clinical trials has increased dramatically. As such, translational research involving gene therapy for a variety of urologic diseases has also increased. In this issue, the contributors present a review of the proceedings from the First Meeting of Japanese Urological Association for Gene Therapy, held on November 20, 1999 in Okayama, Japan. An overview of the meeting was presented by the society’s first president, Dr. Kumon. A guest speaker, Dr. Asano, defined gene therapy translational research objectives and emphasized the importance of applying appropriate basic science concepts in selected preclinical models. He also stressed the careful design of good manufacturing principles and clinical trial indications, patient selection, and logistics. Specific urologic applications of gene therapy were also presented and discussed at the meeting. Gene therapy strategies can essentially be classified into three basic categories: (1) immune augmentation; (2) as a mode of delivery of cytotoxic agents; and (3) specific gene replacement. One of the earliest gene therapy strategies to augment the immune system attempted to deliver high concentrations of cytokines to localize the host immune response. Two basic cytokine delivery strategies are currently utilized: one is to vaccinate patients with tumor cells expressing a particular cytokine, and the other is to directly express cytokines within the tumor. Vaccination with cytokine-expressing tumor cells enhances the efficacy of tumor cell vaccination strategies in rodent models. The most widely utilized cytokine in current clinical trials is granulocyte-macrophage colony-stimulating factor (GM-CSF). Kawai et al., review the data of trials using GM-CSF expressing autologous tumor cells in renal cell carcinoma, malignant melanoma, and prostate cancer. Thus far, despite demonstrating histologic confirmation of host immune response at the sites of immunization, clinically evident tumoricidal responses of the in situ tumor are not yet evident. However, multiple variables need to be addressed before disregarding this approach as a viable gene therapy strategy. These variables include vaccination dosage and frequency as well as the in situ tumor burden at the time of vaccination. An alternative method to augment the host immune response with local cytokines is direct expression of the cytokine with the tumor itself. Nishitani et al. review cytokine gene therapy using naked DNA gene transfer techniques. They presented promising preliminary preclinical data using interleukin-12 (IL12) transfected in situ into subcutaneous renal cell carcinoma tumors in a murine model. One potential limitation of this strategy centers on efforts to ensure delivery of the cytokine gene into the tumor. In particular, in situ targeting of renal cell carcinoma cells versus normal kidney cells may present a clinical problem. This could be overcome if the cytokine gene could be expressed in a tumor-specific manner. Nonetheless, gene therapy immune augmentation is one of the most promising immunotherapy strategies. An alternative gene therapy strategy to target tumors is to use cytotoxic genes or viruses. Cytotoxic gene therapy primarily locally targets tumors but may also have bystander and/or immune-stimulating effects in surrounding cells. The most widely utilized cytotoxic gene is the herpes simplex virus thymidine kinase (HSV-TK) gene. The HSV-TK gene converts a nontoxic metabolite into a toxic metabolite, killing cells expressing the HSV-TK gene, and thus this strategy is aptly named “suicide” gene therapy. Nasu et al., review the usage of the HSV-TK gene in gene therapy trials. Tumor-specific expression of the HSV-TK gene may limit toxicity to normal tissues lacking HSV-TK expression. Shirakawa et al. presented data using tissue-specific expression of the HSV-TK gene using the prostate-specific antigen (PSA) and osteocalcin promoters. The PSA promoter restricts expression primarily to prostate tissues, whereas the osteocalcin promoter targets prostate cancer and bone metastasis. Preliminary data of their Phase I clinical trial, using adenovirus encoding the osteocalcin promoter directed expression of the HSV-TK gene, demonstrated this strategy could be used with minimal toxicity. Cytotoxic gene therapy also includes the usage of cytotoxic viruses that target rapidly dividing tumor cells. Oyama et al. reviewed the usage of a replication competent herpes simplex virus, G207. The G207 virus replicates in (and kills) cells that are rapidly dividing, such as tumor cells, but does not appear to replicate in normal cells. Although cytotoxic agent gene therapy approaches have demonstrated promising results for local tumor control, further studies are warranted to investigate systemic bystander and/or immune effects.","PeriodicalId":80296,"journal":{"name":"Molecular urology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1089/10915360050138530","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular urology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1089/10915360050138530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

GENE THERAPY, a rapidly growing field of interest in the basic sciences, is a relatively new area of research and clinical application within urology. With increasing technological advances, the number of gene therapy-based clinical trials has increased dramatically. As such, translational research involving gene therapy for a variety of urologic diseases has also increased. In this issue, the contributors present a review of the proceedings from the First Meeting of Japanese Urological Association for Gene Therapy, held on November 20, 1999 in Okayama, Japan. An overview of the meeting was presented by the society’s first president, Dr. Kumon. A guest speaker, Dr. Asano, defined gene therapy translational research objectives and emphasized the importance of applying appropriate basic science concepts in selected preclinical models. He also stressed the careful design of good manufacturing principles and clinical trial indications, patient selection, and logistics. Specific urologic applications of gene therapy were also presented and discussed at the meeting. Gene therapy strategies can essentially be classified into three basic categories: (1) immune augmentation; (2) as a mode of delivery of cytotoxic agents; and (3) specific gene replacement. One of the earliest gene therapy strategies to augment the immune system attempted to deliver high concentrations of cytokines to localize the host immune response. Two basic cytokine delivery strategies are currently utilized: one is to vaccinate patients with tumor cells expressing a particular cytokine, and the other is to directly express cytokines within the tumor. Vaccination with cytokine-expressing tumor cells enhances the efficacy of tumor cell vaccination strategies in rodent models. The most widely utilized cytokine in current clinical trials is granulocyte-macrophage colony-stimulating factor (GM-CSF). Kawai et al., review the data of trials using GM-CSF expressing autologous tumor cells in renal cell carcinoma, malignant melanoma, and prostate cancer. Thus far, despite demonstrating histologic confirmation of host immune response at the sites of immunization, clinically evident tumoricidal responses of the in situ tumor are not yet evident. However, multiple variables need to be addressed before disregarding this approach as a viable gene therapy strategy. These variables include vaccination dosage and frequency as well as the in situ tumor burden at the time of vaccination. An alternative method to augment the host immune response with local cytokines is direct expression of the cytokine with the tumor itself. Nishitani et al. review cytokine gene therapy using naked DNA gene transfer techniques. They presented promising preliminary preclinical data using interleukin-12 (IL12) transfected in situ into subcutaneous renal cell carcinoma tumors in a murine model. One potential limitation of this strategy centers on efforts to ensure delivery of the cytokine gene into the tumor. In particular, in situ targeting of renal cell carcinoma cells versus normal kidney cells may present a clinical problem. This could be overcome if the cytokine gene could be expressed in a tumor-specific manner. Nonetheless, gene therapy immune augmentation is one of the most promising immunotherapy strategies. An alternative gene therapy strategy to target tumors is to use cytotoxic genes or viruses. Cytotoxic gene therapy primarily locally targets tumors but may also have bystander and/or immune-stimulating effects in surrounding cells. The most widely utilized cytotoxic gene is the herpes simplex virus thymidine kinase (HSV-TK) gene. The HSV-TK gene converts a nontoxic metabolite into a toxic metabolite, killing cells expressing the HSV-TK gene, and thus this strategy is aptly named “suicide” gene therapy. Nasu et al., review the usage of the HSV-TK gene in gene therapy trials. Tumor-specific expression of the HSV-TK gene may limit toxicity to normal tissues lacking HSV-TK expression. Shirakawa et al. presented data using tissue-specific expression of the HSV-TK gene using the prostate-specific antigen (PSA) and osteocalcin promoters. The PSA promoter restricts expression primarily to prostate tissues, whereas the osteocalcin promoter targets prostate cancer and bone metastasis. Preliminary data of their Phase I clinical trial, using adenovirus encoding the osteocalcin promoter directed expression of the HSV-TK gene, demonstrated this strategy could be used with minimal toxicity. Cytotoxic gene therapy also includes the usage of cytotoxic viruses that target rapidly dividing tumor cells. Oyama et al. reviewed the usage of a replication competent herpes simplex virus, G207. The G207 virus replicates in (and kills) cells that are rapidly dividing, such as tumor cells, but does not appear to replicate in normal cells. Although cytotoxic agent gene therapy approaches have demonstrated promising results for local tumor control, further studies are warranted to investigate systemic bystander and/or immune effects.
转化研究趋势:泌尿外科基因治疗
基因治疗是泌尿外科研究和临床应用的一个相对较新的领域,是基础科学中一个快速发展的领域。随着技术的不断进步,基于基因治疗的临床试验数量急剧增加。因此,涉及多种泌尿系统疾病的基因治疗的转化研究也有所增加。在这期杂志中,作者回顾了1999年11月20日在日本冈山召开的日本泌尿学会基因治疗第一届会议的会议记录。该协会的首任会长Kumon博士介绍了会议的概况。演讲嘉宾Asano博士定义了基因治疗转化研究的目标,并强调了在选定的临床前模型中应用适当的基础科学概念的重要性。他还强调了精心设计良好的制造原则和临床试验适应症、患者选择和后勤。会议还介绍和讨论了基因治疗在泌尿外科的具体应用。基因治疗策略基本上可以分为三大类:(1)免疫增强;(2)作为细胞毒性药物的递送方式;(3)特异性基因置换。最早的增强免疫系统的基因治疗策略之一是试图提供高浓度的细胞因子来定位宿主的免疫反应。目前使用的两种基本细胞因子递送策略:一种是将表达特定细胞因子的肿瘤细胞接种给患者,另一种是直接在肿瘤内表达细胞因子。在啮齿类动物模型中,用表达细胞因子的肿瘤细胞接种可提高肿瘤细胞接种策略的有效性。目前临床试验中应用最广泛的细胞因子是粒细胞-巨噬细胞集落刺激因子(GM-CSF)。Kawai等人回顾了在肾细胞癌、恶性黑色素瘤和前列腺癌中使用表达自体肿瘤细胞的GM-CSF的试验数据。迄今为止,尽管在免疫部位证实了宿主免疫反应的组织学证实,但原位肿瘤的临床明显的杀瘤反应尚不明显。然而,在忽视这种方法作为一种可行的基因治疗策略之前,需要解决多个变量。这些变量包括疫苗接种剂量和频率以及接种疫苗时的原位肿瘤负担。用局部细胞因子增强宿主免疫应答的另一种方法是肿瘤本身直接表达细胞因子。Nishitani等人回顾了裸DNA基因转移技术的细胞因子基因治疗。他们在小鼠皮下肾细胞癌模型中原位转染白细胞介素-12 (il -12),提出了有希望的初步临床前数据。这种策略的一个潜在限制集中在确保细胞因子基因进入肿瘤的努力上。特别是,原位靶向肾细胞癌细胞与正常肾细胞可能会出现临床问题。如果细胞因子基因能够以肿瘤特异性的方式表达,这可以克服。尽管如此,基因治疗免疫增强是最有前途的免疫治疗策略之一。另一种针对肿瘤的基因治疗策略是使用细胞毒性基因或病毒。细胞毒基因治疗主要局部靶向肿瘤,但也可能对周围细胞有旁观者和/或免疫刺激作用。目前应用最广泛的细胞毒基因是单纯疱疹病毒胸苷激酶(HSV-TK)基因。单纯疱疹病毒- tk基因将无毒代谢物转化为有毒代谢物,杀死表达单纯疱疹病毒- tk基因的细胞,因此这种策略被恰当地称为“自杀”基因治疗。Nasu等人回顾了单纯疱疹病毒- tk基因在基因治疗试验中的应用。肿瘤特异性表达的HSV-TK基因可能限制对缺乏HSV-TK表达的正常组织的毒性。Shirakawa等人利用前列腺特异性抗原(PSA)和骨钙素启动子对HSV-TK基因进行了组织特异性表达。PSA启动子主要限制前列腺组织的表达,而骨钙素启动子则针对前列腺癌和骨转移。他们的I期临床试验的初步数据表明,使用编码骨钙素启动子的腺病毒直接表达HSV-TK基因,这种策略可以以最小的毒性使用。细胞毒基因治疗还包括使用针对快速分裂的肿瘤细胞的细胞毒病毒。Oyama等人回顾了一种复制能力强的单纯疱疹病毒G207的使用情况。G207病毒在快速分裂的细胞(如肿瘤细胞)中复制(并杀死),但似乎不会在正常细胞中复制。 基因治疗是泌尿外科研究和临床应用的一个相对较新的领域,是基础科学中一个快速发展的领域。随着技术的不断进步,基于基因治疗的临床试验数量急剧增加。因此,涉及多种泌尿系统疾病的基因治疗的转化研究也有所增加。在这期杂志中,作者回顾了1999年11月20日在日本冈山召开的日本泌尿学会基因治疗第一届会议的会议记录。该协会的首任会长Kumon博士介绍了会议的概况。演讲嘉宾Asano博士定义了基因治疗转化研究的目标,并强调了在选定的临床前模型中应用适当的基础科学概念的重要性。他还强调了精心设计良好的制造原则和临床试验适应症、患者选择和后勤。会议还介绍和讨论了基因治疗在泌尿外科的具体应用。基因治疗策略基本上可以分为三大类:(1)免疫增强;(2)作为细胞毒性药物的递送方式;(3)特异性基因置换。最早的增强免疫系统的基因治疗策略之一是试图提供高浓度的细胞因子来定位宿主的免疫反应。目前使用的两种基本细胞因子递送策略:一种是将表达特定细胞因子的肿瘤细胞接种给患者,另一种是直接在肿瘤内表达细胞因子。在啮齿类动物模型中,用表达细胞因子的肿瘤细胞接种可提高肿瘤细胞接种策略的有效性。目前临床试验中应用最广泛的细胞因子是粒细胞-巨噬细胞集落刺激因子(GM-CSF)。Kawai等人回顾了在肾细胞癌、恶性黑色素瘤和前列腺癌中使用表达自体肿瘤细胞的GM-CSF的试验数据。迄今为止,尽管在免疫部位证实了宿主免疫反应的组织学证实,但原位肿瘤的临床明显的杀瘤反应尚不明显。然而,在忽视这种方法作为一种可行的基因治疗策略之前,需要解决多个变量。这些变量包括疫苗接种剂量和频率以及接种疫苗时的原位肿瘤负担。用局部细胞因子增强宿主免疫应答的另一种方法是肿瘤本身直接表达细胞因子。Nishitani等人回顾了裸DNA基因转移技术的细胞因子基因治疗。他们在小鼠皮下肾细胞癌模型中原位转染白细胞介素-12 (il -12),提出了有希望的初步临床前数据。这种策略的一个潜在限制集中在确保细胞因子基因进入肿瘤的努力上。特别是,原位靶向肾细胞癌细胞与正常肾细胞可能会出现临床问题。如果细胞因子基因能够以肿瘤特异性的方式表达,这可以克服。尽管如此,基因治疗免疫增强是最有前途的免疫治疗策略之一。另一种针对肿瘤的基因治疗策略是使用细胞毒性基因或病毒。细胞毒基因治疗主要局部靶向肿瘤,但也可能对周围细胞有旁观者和/或免疫刺激作用。目前应用最广泛的细胞毒基因是单纯疱疹病毒胸苷激酶(HSV-TK)基因。单纯疱疹病毒- tk基因将无毒代谢物转化为有毒代谢物,杀死表达单纯疱疹病毒- tk基因的细胞,因此这种策略被恰当地称为“自杀”基因治疗。Nasu等人回顾了单纯疱疹病毒- tk基因在基因治疗试验中的应用。肿瘤特异性表达的HSV-TK基因可能限制对缺乏HSV-TK表达的正常组织的毒性。Shirakawa等人利用前列腺特异性抗原(PSA)和骨钙素启动子对HSV-TK基因进行了组织特异性表达。PSA启动子主要限制前列腺组织的表达,而骨钙素启动子则针对前列腺癌和骨转移。他们的I期临床试验的初步数据表明,使用编码骨钙素启动子的腺病毒直接表达HSV-TK基因,这种策略可以以最小的毒性使用。细胞毒基因治疗还包括使用针对快速分裂的肿瘤细胞的细胞毒病毒。Oyama等人回顾了一种复制能力强的单纯疱疹病毒G207的使用情况。G207病毒在快速分裂的细胞(如肿瘤细胞)中复制(并杀死),但似乎不会在正常细胞中复制。 虽然细胞毒素基因治疗方法在局部肿瘤控制方面已经显示出有希望的结果,但需要进一步研究系统性旁观者和/或免疫效应。 虽然细胞毒素基因治疗方法在局部肿瘤控制方面已经显示出有希望的结果,但需要进一步研究系统性旁观者和/或免疫效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信