A multi-model Python wrapper for operational oil spill transport forecasts

Xianlong Hou, B. Hodges, S. Negusse, C. Barker
{"title":"A multi-model Python wrapper for operational oil spill transport forecasts","authors":"Xianlong Hou, B. Hodges, S. Negusse, C. Barker","doi":"10.1088/1749-4699/8/1/014004","DOIUrl":null,"url":null,"abstract":"The Hydrodynamic and oil spill modeling system for Python (HyosPy) is presented as an example of a multi-model wrapper that ties together existing models, web access to forecast data and visualization techniques as part of an adaptable operational forecast system. The system is designed to automatically run a continual sequence of hindcast/forecast hydrodynamic models so that multiple predictions of the time-and-space-varying velocity fields are already available when a spill is reported. Once the user provides the estimated spill parameters, the system runs multiple oil spill prediction models using the output from the hydrodynamic models. As new wind and tide data become available, they are downloaded from the web, used as forcing conditions for a new instance of the hydrodynamic model and then applied to a new instance of the oil spill model. The predicted spill trajectories from multiple oil spill models are visualized through Python methods invoking Google MapTM and Google EarthTM functions. HyosPy is designed in modules that allow easy future adaptation to new models, new data sources or new visualization tools.","PeriodicalId":89345,"journal":{"name":"Computational science & discovery","volume":"8 1","pages":"014004"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/1749-4699/8/1/014004","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational science & discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1749-4699/8/1/014004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

The Hydrodynamic and oil spill modeling system for Python (HyosPy) is presented as an example of a multi-model wrapper that ties together existing models, web access to forecast data and visualization techniques as part of an adaptable operational forecast system. The system is designed to automatically run a continual sequence of hindcast/forecast hydrodynamic models so that multiple predictions of the time-and-space-varying velocity fields are already available when a spill is reported. Once the user provides the estimated spill parameters, the system runs multiple oil spill prediction models using the output from the hydrodynamic models. As new wind and tide data become available, they are downloaded from the web, used as forcing conditions for a new instance of the hydrodynamic model and then applied to a new instance of the oil spill model. The predicted spill trajectories from multiple oil spill models are visualized through Python methods invoking Google MapTM and Google EarthTM functions. HyosPy is designed in modules that allow easy future adaptation to new models, new data sources or new visualization tools.
用于操作溢油运输预测的多模型Python包装器
Python的流体动力学和溢油建模系统(HyosPy)是一个多模型包装器的例子,它将现有模型、预测数据的网络访问和可视化技术联系在一起,作为适应性操作预测系统的一部分。该系统的设计目的是自动运行连续的后推/预测流体动力学模型,以便在报告泄漏时可以对随时间和空间变化的速度场进行多种预测。一旦用户提供了估计的泄漏参数,系统就会根据流体动力学模型的输出运行多个溢油预测模型。当新的风向和潮汐数据可用时,它们就会从网上下载下来,作为一个新的水动力模型实例的强迫条件,然后应用到一个新的溢油模型实例中。通过调用谷歌MapTM和谷歌EarthTM函数的Python方法,将多个溢油模型预测的溢油轨迹可视化。HyosPy以模块形式设计,允许将来轻松适应新模型、新数据源或新的可视化工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信