ObsPy: a bridge for seismology into the scientific Python ecosystem

L. Krischer, T. Megies, R. Barsch, M. Beyreuther, T. Lecocq, C. Caudron, J. Wassermann
{"title":"ObsPy: a bridge for seismology into the scientific Python ecosystem","authors":"L. Krischer, T. Megies, R. Barsch, M. Beyreuther, T. Lecocq, C. Caudron, J. Wassermann","doi":"10.1088/1749-4699/8/1/014003","DOIUrl":null,"url":null,"abstract":"The Python libraries NumPy and SciPy are extremely powerful tools for numerical processing and analysis well suited to a large variety of applications. We developed ObsPy (http://obspy.org), a Python library for seismology intended to facilitate the development of seismological software packages and workflows, to utilize these abilities and provide a bridge for seismology into the larger scientific Python ecosystem. Scientists in many domains who wish to convert their existing tools and applications to take advantage of a platform like the one Python provides are confronted with several hurdles such as special file formats, unknown terminology, and no suitable replacement for a non-trivial piece of software. We present an approach to implement a domain-specific time series library on top of the scientific NumPy stack. In so doing, we show a realization of an abstract internal representation of time series data permitting I/O support for a diverse collection of file formats. Then we detail the integration and repurposing of well established legacy codes, enabling them to be used in modern workflows composed in Python. Finally we present a case study on how to integrate research code into ObsPy, opening it to the broader community. While the implementations presented in this work are specific to seismology, many of the described concepts and abstractions are directly applicable to other sciences, especially to those with an emphasis on time series analysis.","PeriodicalId":89345,"journal":{"name":"Computational science & discovery","volume":"8 1","pages":"014003"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1088/1749-4699/8/1/014003","citationCount":"533","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational science & discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1749-4699/8/1/014003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 533

Abstract

The Python libraries NumPy and SciPy are extremely powerful tools for numerical processing and analysis well suited to a large variety of applications. We developed ObsPy (http://obspy.org), a Python library for seismology intended to facilitate the development of seismological software packages and workflows, to utilize these abilities and provide a bridge for seismology into the larger scientific Python ecosystem. Scientists in many domains who wish to convert their existing tools and applications to take advantage of a platform like the one Python provides are confronted with several hurdles such as special file formats, unknown terminology, and no suitable replacement for a non-trivial piece of software. We present an approach to implement a domain-specific time series library on top of the scientific NumPy stack. In so doing, we show a realization of an abstract internal representation of time series data permitting I/O support for a diverse collection of file formats. Then we detail the integration and repurposing of well established legacy codes, enabling them to be used in modern workflows composed in Python. Finally we present a case study on how to integrate research code into ObsPy, opening it to the broader community. While the implementations presented in this work are specific to seismology, many of the described concepts and abstractions are directly applicable to other sciences, especially to those with an emphasis on time series analysis.
ObsPy:地震学进入科学Python生态系统的桥梁
Python库NumPy和SciPy是非常强大的数值处理和分析工具,非常适合各种应用程序。我们开发了ObsPy (http://obspy.org),这是一个用于地震学的Python库,旨在促进地震学软件包和工作流的开发,利用这些功能,为地震学与更大的科学Python生态系统提供一座桥梁。许多领域的科学家希望将他们现有的工具和应用程序转换为利用Python提供的平台,他们面临着一些障碍,例如特殊的文件格式,未知的术语,以及没有合适的替代品来替代重要的软件。我们提出了一种在科学NumPy堆栈之上实现特定领域时间序列库的方法。在此过程中,我们展示了时间序列数据的抽象内部表示的实现,允许对各种文件格式集合的I/O支持。然后我们详细介绍了建立良好的遗留代码的集成和重新利用,使它们能够在用Python编写的现代工作流中使用。最后,我们提供了一个案例研究,说明如何将研究代码集成到ObsPy中,并将其开放给更广泛的社区。虽然在这项工作中提出的实现是特定于地震学的,但许多描述的概念和抽象可以直接适用于其他科学,特别是那些强调时间序列分析的科学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信